Skip to main content
Log in

Saccharomyces boulardii CNCM I-745 beeinflusst das darmassoziierte Immunsystem

Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system

  • Published:
MMW - Fortschritte der Medizin Aims and scope

Zusammenfassung

Hintergrund

Das Bewusstsein für die Bedeutung des Darmmikrobioms im Hinblick auf die Immunfunktion und die Abwehr von Krankheitserregern nimmt immer mehr zu. Die Arzneihefe Saccharomyces boulardii CNCM I-745 (S. boulardii) wird bereits seit mehr als 50 Jahren als Probiotikum zur Prävention und Behandlung der infektiösen Diarrhö eingesetzt. Metaanalysen bestätigen die klinische Wirksamkeit von S. boulardii bei akuten Diarrhöen unterschiedlicher Genese bei Kindern und Erwachsenen.

Methode

In der Übersichtsarbeit werden experimentelle Studien zu den molekularen und immunologischen Mechanismen zusammengefasst, die der klinisch nachgewiesenen Wirksamkeit von S. boulardii zugrunde liegen. Der Schwerpunkt liegt dabei auf dem darmassoziierten Immunsystem.

Ergebnisse

S. boulardii stimuliert die Freisetzung von Immunglobulinen und Zytokinen und induziert auch die Reifung von Immunzellen, was somit nahe legt, dass die Arzneihefe zu einer allgemeinen unspezifischen Aktivierung des Immunsystems führt. Im Fall einer vorliegenden Infektion ist S. boulardii in der Lage, pathogene Bakterien zu binden und deren Toxine zu neutralisieren. Darüber hinaus greift S. boulardii in die infektionsinduzierte Signalkaskade ein und kann, indem sie das angeborene wie auch das adaptive Immunsystem beeinflusst, die überschießende Entzündungsreaktion abschwächen. Dank dieser Mechanismen nimmt das Adhäsionspotential der Pathogene ab, wodurch die intestinale Epithelschicht geschützt wird und sich der diarrhöbedingte Flüssigkeitsverlust reduziert.

Schlussfolgerung

Die unterschiedlichen molekularen und immunologischen Mechanismen, welche in den experimentellen Studien untersucht wurden, untermauern die bereits nachgewiesene sehr gute klinische Wirksamkeit von S. boulardii bei infektiösen Diarrhöen, hervorgerufen durch Pathogene, wie Bakterien, Viren und Pilze.

Abstract

Background

The impact of the intestinal microbiome is increasing steadily with regard to the immune function und the defense against pathogens. The medicinal yeast Saccharomyces boulardii CNCM I-745 (S. boulardii) has been used as probiotic for the prevention and treatment of infectious diarrhea since more than 50 years. Meta-analyses confirm the clinical efficacy of S. boulardii to treat diarrhea of various origins in children and adults.

Method

This review article summarizes experimental studies on molecular and immunological mechanisms which explain the proven clinical efficacy of S. boulardii. Thereby the focus is on the gut-associated immune system.

Results

S. boulardii stimulates the release of immunoglobulins and cytokines and also induces the maturation of immune cells. This suggests that S. boulardii is capable of activating the unspecific immune system. In case of an infection, S. boulardii is able to bind pathogenic bacteria and to neutralize their toxins. Moreover, the medicinal yeast can attenuate the overreacting inflammatory immune response, by interfering with the signaling cascade, which is induced by the infection, and that way influences the innate and adaptive immune system. Thanks to these mechanisms the pathogens’ potential of adhesion is lessened. Thus the intestinal epithelial layer is protected and diarrhea-induced fluid loss is reduced.

Conclusion

The different molecular and immunological mechanisms investigated in the experimental studies prove the already confirmed very good clinical efficacy of S. boulardii in infectious diarrhea caused by pathogens such as bacteria, viruses, and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

CCL2:

CC-Chemokinligand 2

CCR7:

CC-Chemokinrezeptor Typ 7

CXCL-8:

CXC-Motiv-Chemokin 8

EHEC:

enterohämorrhagische E. coli

EPEC:

enteropathogene E. coli

ETEC:

enterotoxische E. coli

Erk1/2:

extrazelluläre Signalregulierte Kinase

GM-CSF:

Granulozyten-Monozyten-Kolonie-stimulierender Faktor

IL:

Interleukin

JNK:

Jun-N-terminale Kinasen

MAPK:

Mitogen-aktivierte Proteinkinase

MLC:

Myosin-leichte-Kette

MLC-P:

Myosin-leichte-Ketten-Phosphatase

NF-κB:

nukleärer Faktor Kappa-B

p38:

p38-mitogenaktivierte Proteinkinasen

Rac1:

Ras-ähnliches C3 Botulinumtoxin Substrat 1

TNF-α:

Tumornekrosefaktor α

Tox:

Toxin

Literatur

  1. Fietto JL, Araujo RS, Valadao FN, et al. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can J Microbiol 2004; 50(8): 615–621.

    Article  CAS  PubMed  Google Scholar 

  2. Mantis NJ, Rol N, Corthesy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4(6): 603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buts JP, Bernasconi P, Vaerman JP, Dive C. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardii. Dig Dis Sci 1990; 35(2): 251–256.

    Article  CAS  PubMed  Google Scholar 

  4. Qamar A, Aboudola S, Warny M, et al. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect Immun 2001; 69(4): 2762–2765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodrigues AC, Cara DC, Fretez SH, et al. Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J Appl Microbiol 2000; 89(3): 404–414.

    Article  CAS  PubMed  Google Scholar 

  6. Caetano JA, Parames MT, Babo MJ, et al. Immunopharmacological effects of Saccharomyces boulardii in healthy human volunteers. Int J Immunopharmacol 1986; 8(3): 245–259.

    Article  CAS  PubMed  Google Scholar 

  7. Badia R, Zanello G, Chevaleyre C, et al. Effect of Saccharomyces cerevisiae var. Boulardii and betagalactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88). Vet Res 2012; 43: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith IM, Christensen JE, Arneborg N, Jespersen L. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study. PLoS One 2014; 9(5): e96595.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J 2014; 13: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bohn JA, BeMiller JN. (1,3)-ß-D-Glucans as biological response modifiers: a review of structure-functional activity relationship. Carbohydrate Polymers 1995; 28: 3–14.

    Article  CAS  Google Scholar 

  11. Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 2003; 197(9): 1119–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kankkunen P, Teirila L, Rintahaka J, Alenius H, Wolff H, Matikainen S. (1,3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol 2010; 184(11): 6335–6342.

    Article  CAS  PubMed  Google Scholar 

  13. Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin Exp Gastroenterol 2016; 9: 269–279.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bielaszewska M, Aldick T, Bauwens A, Karch H. Hemolysin of enterohemorrhagic Escherichia coli: structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 2014; 304(5–6): 521–529.

    Article  CAS  PubMed  Google Scholar 

  15. Dalmasso G, Loubat A, Dahan S, Calle G, Rampal P, Czerucka D. Saccharomyces boulardii prevents TNFalpha- induced apoptosis in EHEC-infected T84 cells. Res Microbiol 2006; 157(5): 456–465.

    Article  CAS  PubMed  Google Scholar 

  16. Dahan S, Dalmasso G, Imbert V, Peyron JF, Rampal P, Czerucka D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun 2003; 71(2): 766–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect Immun 2000; 68(10): 5998–6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hobbie S, Chen LM, Davis RJ, Galan JE. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol 1997; 159(11): 5550–5559.

    CAS  PubMed  Google Scholar 

  19. Martins FS, Vieira AT, Elian SD, Arantes RM, Tiago FC, Sousa LP, et al. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect 2013; 15(4): 270–279.

    Article  CAS  PubMed  Google Scholar 

  20. Pontier-Bres R, Munro P, Boyer L, et al. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS One 2014; 9(8): e103069.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martins FS, Dalmasso G, Arantes RM, et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS One 2010; 5(1): e8925.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mumy KL, Chen X, Kelly CP, McCormick BA. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am J Physiol Gastrointest Liver Physiol 2008; 294(3): G599–G609.

    Article  CAS  PubMed  Google Scholar 

  23. Rodrigues AC, Nardi RM, Bambirra EA, Vieira EC, Nicoli JR. Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J Appl Bacteriol 1996; 81(3): 251–256.

    Article  CAS  PubMed  Google Scholar 

  24. Castagliuolo I, Riegler MF, Valenick L, Lamont JT, Pothoulakis C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 1999; 67(1): 302–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Castagliuolo I, Lamont JT, Nikulasson ST, Pothoulakis C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun 1996; 64(12): 5225–5232.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Elmer GW, McFarland LV. Suppression by Saccharomyces boulardii of toxigenic Clostridium difficile overgrowth after vancomycin treatment in hamsters. Antimicrob Agents Chemother 1987; 31(1): 129–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen X, Kokkotou EG, Mustafa N, et al. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem 2006; 281(34): 24449–24454.

    Article  CAS  PubMed  Google Scholar 

  28. Buccigrossi V, Laudiero G, Russo C, et al. Chloride secretion induced by rotavirus is oxidative stress-dependent and inhibited by Saccharomyces boulardii in human enterocytes. PLoS One 2014; 9(6): e99830.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fidan I, Kalkanci A, Yesilyurt E, et al. Effects of Saccharomyces boulardii on cytokine secretion from intraepithelial lymphocytes infected by Escherichia coli and Candida albicans. Mycoses 2009; 52(1): 29–34.

    Article  CAS  PubMed  Google Scholar 

  30. Jawhara S, Habib K, Maggiotto F, et al. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions. PLoS One 2012; 7(7): e40648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16(18): 2202–2222.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Karpa KD. Probiotics for Clostridium difficile diarrhea: putting it into perspective. Ann Pharmacother 2007; 41(7): 1284–1287.

    Article  CAS  PubMed  Google Scholar 

  33. Dalmasso G, Cottrez F, Imbert V, et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology 2006; 131(6): 1812–1825.

    Article  CAS  PubMed  Google Scholar 

  34. Abbas Z, Yakoob J, Jafri W, et al. Cytokine and clinical response to Saccharomyces boulardii therapy in diarrhea-dominant irritable bowel syndrome: a randomized trial. Eur J Gastroenterol Hepatol 2014; 26(6): 630–639.

    CAS  PubMed  Google Scholar 

  35. Volz T, Wölbing F, Regler F, Kaesler S, Biedermann J. NOD2 Signalling critically influences sensitization to orally ingested allergens. J Invest Dermatol 2016; 136(9): 201.

    Article  Google Scholar 

  36. Mohle L, Mattei D, Heimesaat MM, et al. Ly6C(hi) Monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 2016; 15(9): 1945–1956.

    Article  PubMed  Google Scholar 

  37. Erny D, Hrabe de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965–977.

    Article  CAS  PubMed  Google Scholar 

  38. Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109–118.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Stier.

Additional information

This article is part of a supplement not sponsored by the industry.

Interessenkonflikt

Die Arbeit von Dr. Heike Stier wurde unterstützt von der MEDICE Arzneimittel Pütter GmbH & Co. KG, Iserlohn. Prof. Dr. Stephan C. Bischoff erhielt keinerlei finanzielle Unterstützung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stier, H., Bischoff, S.C. Saccharomyces boulardii CNCM I-745 beeinflusst das darmassoziierte Immunsystem. MMW - Fortschritte der Medizin 159 (Suppl 5), 1–6 (2017). https://doi.org/10.1007/s15006-017-9802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15006-017-9802-3

Schlüsselwörter

Key words

Navigation