Skip to main content
Log in

Bedeutung der verschiedenen i.v.-Eisengenerationen für den medizinischen Alltag

Importance of the different i.v. iron generations for everyday medical practice

  • Published:
MMW - Fortschritte der Medizin Aims and scope

Zusammenfassung

Hintergrund:

Eisenmangel und Anämie treten insbesondere bei Frauen oder als Komorbiditäten diverser chronischer Erkrankungen auf. Für die Behandlung eines Eisenmangels oder einer Anämie stehen neben oralen Präparaten auch parenterale Eisentherapien zur Verfügung. Aufgrund der zunehmenden Bedeutung und wachsenden Anzahl von parenteralen Eisenpräparaten werden die Pharmakologie und Applikation sowie die Chronologie der Zulassungen und die Eigenschaften der verschiedenen Präparate hier vergleichend dargestellt.

Methode:

Übersichtsarbeit

Ergebnisse:

Es existieren bisher drei verschiedene Generationen von parenteralen Eisenpräparaten, die sich hinsichtlich Stabilität, Sicherheit und Dosierung unterscheiden. Insbesondere die Wirkstoffe der dritten Generation, Eisencarboxymaltose, Eisenisomaltosid und Ferumoxytol zeichnen sich durch eine hohe Komplexstabilität und vergleichbare Sicherheit aus und erlauben eine schnelle Applikation hoher Eisendosen.

Schlussfolgerungen:

Hochmolekulares Eisendextran, als Vertreter der Eisenpräparate der ersten Generation, sollte möglichst nicht mehr verwendet werden, da neuere i.v. Eisenpräparate mit deutlich geringerem Risiko für schwerwiegende anaphylaktische Reaktionen verfügbar sind. Eisengluconat und Eisensucrose, als Vertreter der zweiten Generation, sind sehr effiziente Präparate, erfordern aber häufige Klinik- oder Arztbesuche, da sie aufgrund labilerer Eisenkomplexe nur in niedrigen Dosen verabreicht werden dürfen. Die drei parenteralen Eisenformulierungen der dritten Generation weisen im Alltag Vorteile in der Handhabung auf, da sie vergleichbar gute Sicherheitsprofile, eine hohe Komplexstabilität und hierdurch die Möglichkeit der schnellen Applikation hoher Eisendosen bis hin zu Gesamtdosisinfusionen bieten. Ferner sind Testdosen bei diesen Präparaten nicht erforderlich, was ihren Einsatz zusätzlich vereinfacht.

Abstract

Background:

Iron deficiency and anaemia occur in particular in women or as comorbid conditions to a variety of chronic diseases. Besides oral preparations, parenteral iron therapies are also available for the treatment of iron deficiency or anaemia. In the light of the growing importance and increasing number of parenteral iron preparations, their pharmacology and application as well as the chronology of their approvals and the characteristics of the various preparations are presented here for comparison.

Method:

Review

Results:

To date, there are three different generations of parenteral iron preparations, which differ in terms of stability, safety and dosage. In particular, the active substances of the third generation, ferric carboxymaltose, iron isomaltoside and ferumoxytol are characterised by high complex stability and comparable safety, also allowing rapid application of high doses of iron.

Conclusions:

High molecular weight iron dextran, as a representative of 1st generation iron preparations, should no longer be used if possible, as more recent i.v. iron preparations are available with considerably lower risk of serious anaphylactic reactions. Ferrous gluconate and iron sucrose, as representatives of the 2nd generation, are very efficient preparations, but they require frequent visits to the clinic or the doctor, as they may only be administered in low doses because of labile iron complexes. The three 3rd generation parenteral iron formulations have advantages in handling in everyday practice, since they offer comparably good safety profiles, high complex stability and thus the possibility of rapid application of high doses of iron up to the total cumulative dose. Furthermore, test doses are not required with these preparations, which also simplifies their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1:

LITERATUR

  1. NKF-DOQI clinical practice guidelines for the treatment of anemia of chronic renal failure. National Kidney Foundation-Dialysis Outcomes Quality Initiative. Am J Kidney Dis 30 (4 Suppl 3) (1997), S192-S240.

    Google Scholar 

  2. Fachinformation Ferrlecit®. 2009.

  3. Fachinformation Venofer®. 2010.

  4. Fachinformation CosmoFer®. 2011.

  5. Fachinformation Ferinject®. 2011.

  6. Fachinformation MonoFer®. 2011.

  7. Anker SD, Comin CJ, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361 (2009), 2436–2448.

    Article  PubMed  CAS  Google Scholar 

  8. Auerbach M, Ballard H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology Am Soc Hematol Educ Program 2010; 2010:338–347.

    Article  PubMed  Google Scholar 

  9. Auerbach M, Coyne D, Ballard H. Intravenous iron: from anathema to standard of care. Am J Hematol 83 (2008), 580–588.

    Article  PubMed  CAS  Google Scholar 

  10. Baird IM, Podmore DA. Intramuscular iron therapy in iron-deficiency anaemia. Lancet 267 (1954), 942–946.

    Article  PubMed  CAS  Google Scholar 

  11. Balakrishnan VS, Rao M, Kausz AT, et al. Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Invest 39 (2009), 489–496.

    Article  PubMed  CAS  Google Scholar 

  12. Barton JC, Barton EH, Bertoli LF, Gothard CH, Sherrer JS. Intravenous iron dextran therapy in patients with iron deficiency and normal renal function who failed to respond to or did not tolerate oral iron supplementation. Am J Med 109 (2000), 27–32.

    Article  PubMed  CAS  Google Scholar 

  13. Chertow GM, Mason PD, Vaage-Nilsen O, Ahlmen J. Update on adverse drug events associated with parenteral iron. Nephrol Dial Transplant 21 (2006), 378–382.

    Article  PubMed  CAS  Google Scholar 

  14. Covic A, Mircescu G. The safety and efficacy of intravenous ferric carboxymaltose in anaemic patients undergoing haemodialysis: a multi-centre, openlabel, clinical study. Nephrol Dial Transplant 25 (2010), 2722–2730.

    Article  PubMed  CAS  Google Scholar 

  15. Eschbach JW. Iron requirements in erythropoietin therapy. Best Pract Res Clin Haematol 18 (2005), 347–361.

    Article  PubMed  CAS  Google Scholar 

  16. Faich G, Strobos J. Sodium ferric gluconate complex in sucrose: safer intravenous iron therapy than iron dextrans. Am J Kidney Dis 33 (1999), 464–470.

    Article  PubMed  CAS  Google Scholar 

  17. Fletes R, Lazarus JM, Gage J, Chertow GM. Suspected iron dextran-related adverse drug events in hemodialysis patients. Am J Kidney Dis 37 (2001), 743–749.

    Article  PubMed  CAS  Google Scholar 

  18. Folkert VW, Michael B, Agarwal R, et al. Chronic use of sodium ferric gluconate complex in hemodialysis patients: safety of higher-dose (> or = 250 mg) administration. Am J Kidney Dis 41 (2003), 651–657.

    Article  PubMed  CAS  Google Scholar 

  19. Gasche C, Berstad A, Befrits R, et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm Bowel Dis 13 (2007), 1545–1553.

    Article  PubMed  Google Scholar 

  20. Gattermann N. The treatment of secondary hemochromatosis. Dtsch Arztebl Int 106 (2009), 499–504, I.

    PubMed  Google Scholar 

  21. Gautam CS, Saha L, Sekhri K, Saha PK. Iron deficiency in pregnancy and the rationality of iron supplements prescribed during pregnancy. Medscape J Med 10 (2008), 283.

    PubMed  Google Scholar 

  22. Gozzard D. When is high-dose intravenous iron repletion needed? Assessing new treatment options. Drug Des Devel Ther 5 (2011), 51–60.

    Article  PubMed  CAS  Google Scholar 

  23. Hallberg L. Oral iron therapy-factors affecting the absorption. In: Hallberg L, Harwerth HG, Vannotti A (Hrsg). Iron deficiency. Pathogenesis, Clinical Aspects, Therapy. Academic Press, London 1970, S. 551-572.

  24. Heath CW, Strauss MB, Castle WB. Quantitative aspects of iron deficiency in hypochromic anemia. The parenteral administration of iron. J Clin Invest 11 (1932), 1293–1312.

    Article  PubMed  CAS  Google Scholar 

  25. Heinrich HC. Bioverfügbarkeit und therapeutische Wirksamkeit oraler Eisen(II)- und Eisen(III)präparate. Schweizerische Apotheker-Zeitung 22 (1986), 1231–1256.

    Google Scholar 

  26. Henry DH, Dahl NV, Auerbach M, Tchekmedyian S, Laufman LR. Intravenous ferric gluconate significantly improves response to epoetin alfa versus oral iron or no iron in anemic patients with cancer receiving chemotherapy. Oncologist 12 (2007), 231–242.

    Article  PubMed  CAS  Google Scholar 

  27. Horl WH. Clinical aspects of iron use in the anemia of kidney disease. J Am Soc Nephrol 18 (2007), 382–393.

    Google Scholar 

  28. Jahn MR, Andreasen HB, Futterer S, et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm 78 (2011), 480–491.

    Article  PubMed  CAS  Google Scholar 

  29. Jankowska EA, Rozentryt P, Witkowska A, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 31 (2010), 1872–1880.

    Article  PubMed  CAS  Google Scholar 

  30. Krayenbuehl PA, Battegay E, Breymann C, Furrer J, Schulthess G. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood 118 (2011), 3222–3227.

    Google Scholar 

  31. Ludwig H, Van BS, Barrett-Lee P, et al. The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer 40 (2004), 2293–2306.

    Article  PubMed  Google Scholar 

  32. Macdougall IC, McLaughlin J, Fortin GS, Li Z, Strauss WE. The FIRST Head-to-Head Comparison Study (Ferumoxytol Compared to Iron Sucrose Trial) of the safety and efficacy of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with chronic kidney disease. [Poster presented at the American Society of Nephrology Kidney Week 2011; November 8-13, 2011; Philadelphia, PA]. 2011.

  33. Macdougall IC, Roche A. Administration of intravenous iron sucrose as a 2-minute push to CKD patients: a prospective evaluation of 2,297 injections. Am J Kidney Dis 46 (2005), 283–289.

    Article  PubMed  CAS  Google Scholar 

  34. Mamula P, Piccoli DA, Peck SN, Markowitz JE, Baldassano RN. Total dose intravenous infusion of iron dextran for iron-deficiency anemia in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 34 (2002), 286–290.

    Article  PubMed  CAS  Google Scholar 

  35. McCarthy JT, Regnier CE, Loebertmann CL, Bergstralh EJ. Adverse events in chronic hemodialysis patients receiving intravenous iron dextran - a comparison of two products. Am J Nephrol 20 (2000), 455–462.

    Article  PubMed  CAS  Google Scholar 

  36. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33 (2012), 1787–1847.

    Article  PubMed  Google Scholar 

  37. Munoz M, Garcia-Erce JA, Remacha AF. Disorders of iron metabolism. Part II: iron deficiency and iron overload. J Clin Pathol 64 (2011), 287–296.

    Article  PubMed  CAS  Google Scholar 

  38. NISSIM JA. Intravenous administration of iron. Lancet 2 (1947), 49–51.

    Article  PubMed  CAS  Google Scholar 

  39. NISSIM JA. Toxic reactions after intravenous saccharated iron oxide in man; suggestions for improved preparations. Br Med J 1 (1954), 352–356.

    Article  PubMed  CAS  Google Scholar 

  40. Qunibi WY. The efficacy and safety of current intravenous iron preparations for the management of irondeficiency anaemia: a review. Arzneimittelforschung 60(6a) (2010), 399–412.

    PubMed  CAS  Google Scholar 

  41. Qunibi WY, Martinez C, Smith M, Benjamin J, Mangione A, Roger SD. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of nondialysis-dependent chronic kidney disease patients. Nephrol Dial Transplant 26 (2011), 1599–1607.

    Article  PubMed  CAS  Google Scholar 

  42. Rottembourg J, Kadri A, Leonard E, Dansaert A, Lafuma A. Do two intravenous iron sucrose preparations have the same efficacy? Nephrol Dial Transplant 26 (2011), 3262–3267.

    Article  PubMed  CAS  Google Scholar 

  43. Singh A, Patel T, Hertel J, Bernardo M, Kausz A, Brenner L. Safety of ferumoxytol in patients with anemia and CKD. Am J Kidney Dis 52 (2008), 907–915.

    Article  PubMed  CAS  Google Scholar 

  44. Stockman R. The Treatment of Chlorosis by Iron and some Other Drugs. Br Med J 1 (1893), 881–885.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas L, Thomas C, Heimpel H. Neue Prameter zur Diagnostik von Eisenmangelzuständen. Deutsches Ärzteblatt 102 (2005), 580–586.

    Google Scholar 

  46. Vermeulen E, Vermeersch P. Hepcidin as a biomarker for the diagnosis of iron metabolism disorders: a review. Acta Clin Belg 67 (2012), 190-197.

    Google Scholar 

  47. Wikstrom B, Bhandari S, Barany P, et al. Iron isomaltoside 1000: a new intravenous iron for treating iron deficiency in chronic kidney disease. J Nephrol 24 (2011), 589–596.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Biggar.

Additional information

The supplement this article is part of is not sponsored by the industry.

Danksagung

Wir danken Frau Dr. Kruse, Eickhoff Kommunikation GmbH, Köln für ihre Unterstütung beim Verfassen des Textes, die über eine finanzielle Zuwendung der Firma Takeda Pharma Vertrieb GmbH & Co KG ermöglicht wurde. Allerdings wurde der Text maßgeblich von den Autoren gestaltet, und der Inhalt reflektiert allein die Ansichten der Autoren.

Interessenkonflikt

Sowohl Patrick Biggar als auch Kai-Michael Hahn erhielten Berater-, Studien- und Referentenhonorare von den Firmen Medice, Fresenius Medical Care, Vifor, Takeda sowie auch Amgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biggar, P., Hahn, KM. Bedeutung der verschiedenen i.v.-Eisengenerationen für den medizinischen Alltag. MMW - Fortschritte der Medizin 155 (Suppl 2), 18–24 (2013). https://doi.org/10.1007/s15006-013-0732-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15006-013-0732-4

Schlüsselwörter

Keywords

Navigation