Skip to main content
Log in

Unfreiwillige Motorik

Welche Ursache haben unwillkürliche Spiegelbewegungen?

  • zertifizierte fortbildung
  • Published:
InFo Neurologie & Psychiatrie Aims and scope

Zusammenfassung

Bei Kindern treten Spiegelbewegungen physiologisch auf und sind wahrscheinlich der entwicklungsbedingten Unreife des Balkens geschuldet. Pathologische, angeborene Spiegelbewegungen können klinisch entweder isoliert oder als Teil komplexer genetischer Syndrome wie dem Kallmann-Syndrom und dem Klippel-Feil-Syndrom auftreten, kommen aber auch im Rahmen der infantilen Zerebralparese (Morbus Little) vor. Kongenitale isolierte Spiegelbewegungen folgen meist einem autosomal-dominanten Erbgang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

1
2
3
4

Literatur

  1. Durwen HF, Herzog AG, Falk A, Callbrese P, Gehlen W (1997) Motorische Spigelphänomene. Spiegelbildlich Mitbewegungen und Mitaktivierungen. Neurol. Rehabil. 2: 69–75

    Google Scholar 

  2. Cincotta M, Ragazzoni A, de Scisciolo G, Pinto F, Maurri S, Barontini F (1994) Abnormal projection of corticospinal tracts in a patient with congenital mirror movements. Neurophysiol Clin 24:427–434

    Article  CAS  PubMed  Google Scholar 

  3. Cincotta M, Lori S, Gangemi PF, Barontini F, Ragazzoni A (1996) Hand motor cortex activation in a patient with congenital mirror movements: a study of the silent period following focal transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 101:240–246

    Article  CAS  PubMed  Google Scholar 

  4. Cincotta M, Ziemann U (2008) Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 119:744–762

    Article  CAS  PubMed  Google Scholar 

  5. Zülch KJ, Müller N (1969) Associated movements in man. In: Vinken PJ, Bruyn GW (Hsg..) Handbook of Clinical Neurology (Vol.1.) Amsterdam: North Holland Publishing Company

    Google Scholar 

  6. Verstynen T, Spencer R, Stinear CM, Konkle T, Diedrichsen J, Byblow WD, Ivry RB (2007) Ipsilateral corticospinal projections do not predict congenital mirror movements: a case report. Neuropsychologia 45:844–852

    Article  CAS  PubMed  Google Scholar 

  7. Touwen BC (1982) Die Untersuchung von Kindern mit geringen neurologischen Funktionsstörungen, Thieme-Verlag, Stuttgart.

    Google Scholar 

  8. Heinen F, Glocker FX, Fietzek U, Meyer BU, Luecking CH, Korinthenberg R (1998) Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann Neurol 43:608–612 37.

    Article  CAS  PubMed  Google Scholar 

  9. Mayston MJ, Harrison LM, Quinton R, Stephens JA, Krams M, Bouloux PM (1997) Mirror movements in X-linked Kallmann’s syndrome I. A neurophysiological study. Brain 120(Pt 7):1199–1216

    Article  PubMed  Google Scholar 

  10. Koerte I, Eftimov L, Laubender RP, Esslinger O, Schroeder AS, Ertl-Wagner B, Wahllaender-Danek U, Heinen F, Danek A (2010) Mirror movements in healthy humans across the lifespan: effects of development and ageing. Dev Med Child Neurol 52:1106–1112

    Article  PubMed  Google Scholar 

  11. Schott GD, Wyke MA (1981) Congenital mirror movements. J Neurol Neurosurg Psychiatr 44:586–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bonnet C, Roubertie A, Doummar D, Bahi-Buisson N, Cochen de Cock V, Roze E (2010) Developmental and benign movement disorders in childhood. Mov Disord 25:1317–1334

    Article  PubMed  Google Scholar 

  13. Depienne C, Cincotta M, Billot S, Bouteiller D, Groppa S, Brochard V, Flamand C, Hubsch C, Meunier S, Giovannelli F, Klebe S, Corvol JC, Vidailhet M, Brice A, Roze E (2011) A novel DCC mutation and genetic heterogeneity in congenital mirror movements. Neurology 76:260–264

    Article  CAS  PubMed  Google Scholar 

  14. Danek A, Heye B, Schroedter R (1991) Descending motor pathways and the Xp22.3 locus: Motor cortex stimulation in Kallmann syndrome patients with mirror movements and in female gene carriers. EurJNeurosci Suppl. 4:315–315.

    Google Scholar 

  15. Krams M, Quinton R, Ashburner J, Friston KJ, Frackowiak RS, Bouloux PM, Passingham RE (1999) Kallmann’s syndrome: mirror movements associated with bilateral corticospinal tract hypertrophy. Neurology 52:816–822

    Article  CAS  PubMed  Google Scholar 

  16. Krams M, Quinton R, Mayston MJ, Harrison LM, Dolan RJ, Bouloux PM, Stephens JA, Frackowiak RS, Passingham RE (1997) Mirror movements in X-linked Kallmann’s syndrome II. A PET study. Brain 120(Pt 7):1217–1228

    Article  PubMed  Google Scholar 

  17. Mayston MJ, Harrison LM, Quinton R, Stephens JA, Krams M, Bouloux PM (1997) Mirror movements in X-linked Kallmann’s syndrome I. A neurophysiological study. Brain 120(Pt 7):1199–1216

    Article  PubMed  Google Scholar 

  18. Farmer SF, Ingram DA, Stephens JA (1990) Mirror movements studied in a patient with Klippel-Feil syndrome. J Physiol (Lond) 428:467–484

    Article  CAS  Google Scholar 

  19. Högen T, Chan W-M, Riedel E et al (2012) Wildervanck’s syndrome and mirror movements: a congenital disorder of axon migration? J Neurol 259:761–763. doi: 10.1007/s00415-011-6239-y

    Article  PubMed  Google Scholar 

  20. Carr LJ, Harrison LM, Evans AL, Stephens JA (1993) Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain 116(Pt 5):1223–1247

    Article  PubMed  Google Scholar 

  21. Carr LJ (1996) Development and reorganization of descending motor pathways in children with hemiplegic cerebral palsy. Acta Paediatr Suppl 416:53–57

    Article  CAS  PubMed  Google Scholar 

  22. Nass R (1985) Mirror movement asymmetries in congenital hemiparesis: the inhibition hypothesis revisited. Neurology 35:1059–1062

    Article  CAS  PubMed  Google Scholar 

  23. Maaß S (2003) Spiegelbildliche Mitbewegungen bei Kindern und Jugendlichen mit infantiler Zerebralparese. Dissertation, Ludwig-Maximilians-Universität München

    Google Scholar 

  24. Zülch KJ, Müller N (1969) Associated movements in man. In: Vinken PJ, Bruyn GW (Hsg..) Handbook of Clinical Neurology (Vol.1.) Amsterdam: North Holland Publishing Company

    Google Scholar 

  25. Westphal C (1874) Ueber Bewegungserscheinungen an gelähmten Gliedern. Arch.Psychiatr, Nervenkr. 4:747–759; 5: 803-834

    Article  Google Scholar 

  26. Thomayer J (1889) O pohybech sdruzených (Note sur le mouvements associés). Sborník Lékarský (Archives Bohêmes de mèdecine) 2:48–61.

    Google Scholar 

  27. Curshmann H (1906) Beiträge zur Physiologie und Pathophysiologie der kontralateralen Mitbewegungen. Deutsche Zeitschrift für Nervenheilkunde 31: 1–52

    Article  Google Scholar 

  28. Foerster O (1903) Beiträge zur Kenntnis der Mitbewegungen. Jena: Gustav Fischer Verlag

    Google Scholar 

  29. Burr CW and Crow CB (1913) Mirror writing and other associated movements occuring without palsy. J. Nerv. Ment. Dis. 40: 300–302

    Article  Google Scholar 

  30. Zazzo R (1960) Nanuel pour l’Examen Psychologique de l’Enfant. Neuchatel: Delechaux und Niestlè.

    Google Scholar 

  31. Fog E und Fog M (1963) Cerebral inhibition examined by assiciated movements. In: Bax M und MacKeith R (Hrsg) Minimal Cerebral Dysfunction. Heinemann, London, pp 52–57

    Google Scholar 

  32. Abercrombie MLJ, Lindon RL und Tyson MC (1964) Assoziated movements in normal an physically handicapped children. Dev. Child Neurol. 6: 537–580

    Google Scholar 

  33. Cohen HJ, Taft LT, Mahadeviah MS, Birch HG (1967) Developmental changes in overflow in normal and aberrantly functioning children. J. Pediatr. 71. 39–47

    Article  CAS  PubMed  Google Scholar 

  34. Connoly K und Stratton P (1968) Developmental changes in assiciated movements. Dev. Med. Child Neurol. 10: 49–56

    Article  Google Scholar 

  35. Armatas CA, Summers JJ und Bradshaw JL (1994) Mirror movements in normal adult subjects. J. Clin. Exp. Neuropsychology 16: 405–413

    Article  CAS  Google Scholar 

  36. Danek A (1998) Spiegelbildliche Mitbewegungen. Phänomenologie und kortikale Mechanismen (Habilitationsschrift). Ludwig-Maximilians-Universität München

    Google Scholar 

  37. Cincotta M, Ziemann U (2008) Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 119:744–762

    Article  CAS  PubMed  Google Scholar 

  38. Depienne, C., Cincotta, M., Billot, S., Bouteiller, D., Groppa, S., Brochard, V., Flamand, C., Hubsch, C., Meunier, S., Giovannelli, F., Klebe, S., Corvol, J.C., Vidailhet, M., Brice, A. & Roze, E. (2011). A novel DCC mutation and genetic heterogeneity in congenital mirror movements. Neurology, 76 (3), 260–264

    Article  CAS  PubMed  Google Scholar 

  39. Regli F, Filippa G, Wiesendanger M (1967) Hereditary mirror movements. Arch Neurol 16:620–623

    Article  CAS  PubMed  Google Scholar 

  40. Sharafaddinzadeh N, Bavarsad R, Yousefkhah M, Aleali AM (2008) Familial mirror movements over five generations. Neurol India 56:482–483

    Article  PubMed  Google Scholar 

  41. Srour M, Philibert M, Dion M-H, Duquette A, Richer F, Rouleau GA, Chouinard S (2009) Familial congenital mirror movements: report of a large 4-generation family. Neurology 73:729–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87:175–185

    Article  CAS  PubMed  Google Scholar 

  43. Killeen MT, Sybingco SS (2008) Netrin, Slit and Wnt receptors allow axons to choose the axis of migration. Dev Biol 323:143–151

    Article  CAS  PubMed  Google Scholar 

  44. Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of cortico-spinal tract axons. J Neurosci 22:10346–10356

    CAS  PubMed  Google Scholar 

  45. Ahmed I, Mittal K, Sheikh TI et al (2014) Identification of a homozygous splice site mutation in the dynein axonemal light chain 4 gene on 22q13.1 in a large consanguineous family from Pakistan with congenital mirror movement disorder. Hum Genet 133:1419–1429. doi: 10.1007/s00439-014-1475-8

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan JD, Bernstein JA, Kwan A, Hudgins L (2010) Clues to an early diagnosis of Kallmann syndrome. Am J Med Genet A. 152A:2796–2801

    Article  PubMed  Google Scholar 

  47. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  CAS  PubMed  Google Scholar 

  48. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  CAS  PubMed  Google Scholar 

  49. Lemon RN, Maier MA, Armand J, Kirkwood PA, Yang HW (2002) Functional differences in corticospinal projections from macaque primary motor cortex and supplementary motor area. Adv Exp Med Biol 508:425–434

    Article  PubMed  Google Scholar 

  50. Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL (2002) The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of cortico-spinal tract axons. J Neurosci 22:10346–10356

    CAS  PubMed  Google Scholar 

  51. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  CAS  PubMed  Google Scholar 

  52. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  53. Garvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wassermann EM (2003) Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 114:1662–1670

    Article  CAS  PubMed  Google Scholar 

  54. Garvey MA, Barker CA, Bartko JJ, Denckla MB, Wassermann EM, Castellanos FX, Dell ML, Ziemann U. The ipsilateral silent period in boys with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2005 Aug;116(8):1889–96.

    Article  PubMed  Google Scholar 

  55. Heinen F, Glocker FX, Fietzek U, Meyer BU, Luecking CH, Korinthenberg R (1998) Absence of transcallosal inhibition following focal magnetic stimulation in preschool children. Ann Neurol 43:608–612

    Article  CAS  PubMed  Google Scholar 

  56. Lazarus JA, Todor JI (1991) The role of attention in the regulation of associated movement in children. Dev Med Child Neurol 33:32–39

    Article  CAS  PubMed  Google Scholar 

  57. Njiokiktjien C, Driessen M, Habraken L (1986) Development of supination—pronation movements in normal children. Hum Neurobiol 5:199–203

    CAS  PubMed  Google Scholar 

  58. Waber DP, Mann MB, Merola J (1985) Motor overflow and attentional processes in normal school-age children. Dev Med Child Neurol 27:491–497

    Article  CAS  PubMed  Google Scholar 

  59. Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138

    Article  CAS  PubMed  Google Scholar 

  60. Krams M, Quinton R, Mayston MJ, Harrison LM, Dolan RJ, Bouloux PM, Stephens JA, Frackowiak RS, Passingham RE (1997) Mirror movements in X-linked Kallmann’s syndrome II. A PET study. Brain 120(Pt 7):1217–1228

    Article  PubMed  Google Scholar 

  61. Koenigkam-Santos M, Santos AC, Borduqui T, Versiani BR, Hallak JEC, Crippa JAS, Castro M (2008) Whole-brain voxel-based morphometry in Kallmann syndrome associated with mirror movements. Am J Neuroradiol 29:1799–1804

    Article  CAS  PubMed  Google Scholar 

  62. Koerte, I., Eftimov, L., Laubender, R.P., Esslinger, O., Schroeder, A.S., Ertl-Wagner, B., Wahllaender-Danek, U., Heinen, F. & Danek, A. (2010). Mirror movements in healthy humans across the lifespan: effects of development and ageing. Developmental Med. and Child Neurol., 52 (12), 1106–1112

    Article  Google Scholar 

  63. Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799

    Article  CAS  PubMed  Google Scholar 

  64. Liepert J, Dettmers C, Terborg C, Weiller C (2001) Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 112:114–121 Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol (Lond) 587:5393–5410

    Article  CAS  PubMed  Google Scholar 

  65. Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol (Lond) 587:5393–5410

    Article  CAS  PubMed Central  Google Scholar 

  66. Huebers A, Orekhov Y, Ziemann U (2008) Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity. Eur J Neurosci 28: 364–371

    Article  Google Scholar 

  67. Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG (2005) Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb Cortex 15:588–593

    Article  CAS  PubMed  Google Scholar 

  68. Wiesendanger M, Serrien DJ (2004) The quest to understand bimanual coordination. Prog Brain Res 143:491–505

    Article  PubMed  Google Scholar 

  69. Walsh RR, Small SL, Chen EE, Solodkin A (2008) Network activation during bimanual movements in humans. Neuroimage 43:540–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao Y, Vikingstad EM, Huttenlocher PR, Towle VL, and Levin DN (1994) Functional magnetic resonance studies of the reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period. PNAS 9 (20), 9612–9616

    Article  Google Scholar 

  71. Leinsinger GL, Heiss DT, Jassoy AG, Pfluger T, Hahn K, Danek A (1997) Persistent mirror movements: functional MR imaging of the hand motor cortex. Radiology 203:545–552

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Binkofski.

Additional information

Interessenkonflikt

Die Autoren erklären, dass sie sich bei der Erstellung des Beitrags von keinen wirtschaftlichen Interessen haben leiten lassen und dass im Zusammenhang mit diesem Beitrag keine Interessenkonflikte bestehen.

Der Verlag erklärt, dass die inhaltliche Qualität des Beitrags von zwei unabhängigen Gutachtern geprüft wurde. Werbung in dieser Zeitschriftenausgabe hat keinen Bezug zur CME-Fortbildung.

Der Verlag garantiert, dass die CME-Fortbildung sowie die CME-Fragen frei sind von werblichen Aussagen und keinerlei Produktempfehlungen enthalten. Dies gilt insbesondere für Präparate, die zur Therapie des dargestellten Krankheitsbildes geeignet sind.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binkofski, F., Dafotakis, M., Werner, C.J. et al. Welche Ursache haben unwillkürliche Spiegelbewegungen?. InFo Neurologie 19, 28–37 (2017). https://doi.org/10.1007/s15005-017-1940-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15005-017-1940-8

Navigation