Skip to main content
Log in

Schwerpunkt Fatigue

Zusammenhänge zwischen Fatigue und Mikronährstoffen sowie Darmmikrobiom

  • Schwerpunkt
  • Published:
InFo Hämatologie + Onkologie Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Velicer CM, Ulrich CM. Vitamin and mineral supplement use among US adults after cancer diagnosis: a systematic review. J Clin Oncol. 2008;26(4):665-73

  2. I. f. D. Allensbach. "Naturheilmittel 2010 - Ergebnisse einer bevölkerungsrepräsentativen Befragung". 2010; https://www.ifd-allensbach.de/fileadmin/studien/7528_Naturheilmittel_2010.pdf abgerufen am 12. Oktober 2020

  3. Mayland C et al. Micronutrient concentrations in patients with malignant disease: effect of the inflammatory response. Ann Clin Biochem. 2004;41(Pt 2):138-41

  4. Gröber U et al. Micronutrients in Oncological Intervention. Nutrients. 2016;8(3):163

  5. Plant AS, Tisman Gleen. Frequency of combined deficiencies of vitamin D and holotranscobalamin in cancer patients. Nutr Cancer. 2006;56(2):143-8

  6. Nowak A et al. Effect of vitamin D3 on self-perceived fatigue: A double-blind randomized placebo-controlled trial. Medicine (Baltimore). 2016;95(52):e5353

  7. Koole JL et al. Higher Serum Vitamin D Concentrations Are Longitudinally Associated with Better Global Quality of Life and Less Fatigue in Colorectal Cancer Survivors up to 2 Years after Treatment. Cancer Epidemiol Biomarkers Prev. 2020;29(6):1135-44

  8. Höck AD et al. Review: Vitamin D3 deficiency results in dysfunctions of immunity with severe fatigue and depression in a variety of diseases. In Vivo. 2014;28(1):133-45

  9. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-81

  10. Krause D, Roupas P. Effect of Vitamin Intake on Cognitive Decline in Older Adults: Evaluation of the Evidence. J Nutr Health Aging. 2015;19(7):745-53

  11. Goodwill AM et al. A Systematic Review and Meta-Analysis of The Effect of Low Vitamin D on Cognition. J Am Geriatr Soc. 2017;65(10):2161-8

  12. Anglin RES et al. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry. 2013;202:100-7

  13. Parker GP et al. Vitamin D and depression. J Affect Disord. 2017;208:56-61

  14. Dev R et al. Preliminary report: vitamin D deficiency in advanced cancer patients with symptoms of fatigue or anorexia. Oncologist. 2011;16(11):1637-41

  15. van Harten-Gerritsen AS et al. Vitamin D, Inflammation, and Colorectal Cancer Progression: A Review of Mechanistic Studies and Future Directions for Epidemiological Studies. Cancer Epidemiol Biomarkers Prev. 2015;24(12):1820-8

  16. Bower JE et al. Cancer-related fatigue--mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014;11(10):597-609

  17. Schubert C et al. The association between fatigue and inflammatory marker levels in cancer patients: a quantitative review. Brain Behav Immun. 2007;21(4):413-27

  18. Fakih MG et al. Chemotherapy is linked to severe vitamin D deficiency in patients with colorectal cancer. Int J Colorectal Dis. 2009;24(2):219-24

  19. Savoie MB et al. Vitamin D Levels in Patients with Colorectal Cancer Before and After Treatment Initiation. J Gastrointest Cancer. 2019;50(4):769-79

  20. Santini S et al. Longitudinal evaluation of vitamin D plasma levels during anthracycline- and docetaxel-based adjuvant chemotherapy in early-stage breast cancer patients. Ann Oncol. 2010;21(1):185-6

  21. Kim H et al. Changes in serum hydroxyvitamin D levels of breast cancer patients during tamoxifen treatment or chemotherapy in premenopausal breast cancer patients. Eur J Cancer. 2014;50(8):1403-11

  22. Duntas LH. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009;41(6):443-7

  23. Rayman MP et al. The importance of selenium to human health. Lancet. 2000;356(9225):233-41

  24. Rayman MP et al. Selenium and human health. Lancet. 2012;379(9822):1256-68

  25. Castaño A et al. Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int. 1997;30(6):549-55

  26. Minton O et al. Drug therapy for the management of cancer related fatigue. Cochrane Database Syst Rev. 2008;(1):CD006704

  27. Saligan LN et al. Upregulation of α-synuclein during localized radiation therapy signals the association of cancer-related fatigue with the activation of inflammatory and neuroprotective pathways. Brain Behav Immun. 2013;27(1):63-70

  28. Cutando A et al. Role of melatonin in cancer treatment. Anticancer Res. 2012;32(7):2747-53

  29. Melamud L et al. Melatonin dysregulation, sleep disturbances and fatigue in multiple sclerosis. J Neurol Sci. 2012;314(1-2):37-40

  30. Wang YM et al. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol. 2012;69(5):1213-20

  31. van Maanen A et al. The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med Rev. 2016;29:52-62

  32. Starreveld DEJ et al. Light therapy as a treatment of cancer-related fatigue in (non-)Hodgkin lymphoma survivors (SPARKLE trial): study protocol of a multicenter randomized controlled trial. BMC Cancer. 2018;18(1):880

  33. Powell ND et al. Psychosocial stress and inflammation in cancer. Brain Behav Immun. 2013;30 Suppl:S41-7

  34. Lieverse R et al. Bright light treatment in elderly patients with nonseasonal major depressive disorder: a randomized placebo-controlled trial. Arch Gen Psychiatry. 2011;68(1):61-70

  35. Inglis JE et al. Nutritional Interventions for Treating Cancer-Related Fatigue: A Qualitative Review. Nutr Cancer. 2019;71(1):21-40

  36. Mantovani G et al. A phase II study with antioxidants, both in the diet and supplemented, pharmaconutritional support, progestagen, and anti-cyclooxygenase-2 showing efficacy and safety in patients with cancer-related anorexia/cachexia and oxidative stress. Cancer Epidemiol Biomarkers Prev. 2006;15(5):1030-4

  37. Chapple IL et al. Antioxidant Micronutrients and Oxidative Stress Biomarkers. Methods Mol Biol. 2017;1537:61-77

  38. Labriola D, Livingston R. Possible Interactions Between Dietary Antioxidants and Chemotherapy. Oncology (Williston Park). 1999;13(7):1003-8

  39. Gröber U et al., Antioxidanzien und andere Mikronährstoffe in der komplementären Onkologie. Onkologe;2010(16):73-9

  40. Ambrosone CB et al. Dietary Supplement Use During Chemotherapy and Survival Outcomes of Patients With Breast Cancer Enrolled in a Cooperative Group Clinical Trial (SWOG S0221). J Clin Oncol. 2020;38(8):804-14

  41. Jung AY et al. Antioxidant supplementation and breast cancer prognosis in postmenopausal women undergoing chemotherapy and radiation therapy. Am J Clin Nutr. 2019;109(1):69-78

  42. Leitzmann MF et al. Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst. 2003;95(13):1004-7

  43. Harvie M. Nutritional supplements and cancer: potential benefits and proven harms. Am Soc Clin Oncol Educ Book. 2014;e478-86

  44. Brasky TM et al. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J Clin Oncol. 2017;35(30):3440-8

  45. Goodman GE et al. The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst. 2004;96(23):1743-50

  46. Bjelakovic G et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297(8):842-57

  47. Biesalski HK et al. Reexamination of a meta-analysis of the effect of antioxidant supplementation on mortality and health in randomized trials. Nutrients. 2010;2(9):929-49

  48. Palesh O et al. Management of side effects during and post-treatment in breast cancer survivors. Breast J. 2018;24(2):167-75

  49. Majeed F et al. Ginseng phytochemicals as therapeutics in oncology: Recent perspectives. Biomed Pharmacother. 2018;100:52-63

  50. Barton DL et al. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: a randomized, double-blind trial, N07C2. J Natl Cancer Inst. 2013;105(16):1230-8

  51. Viale PH et al. Can ginseng alleviate cancer-related fatigue? J Adv Pract Oncol. 2013;4(6):392-3

  52. Park HJ et al. Ginseng Purified Dry Extract, BST204, Improved Cancer Chemotherapy-Related Fatigue and Toxicity in Mice. Evid Based Complement Alternat Med. 2015;2015:197459

  53. Yennurajalingam S et al. A Double-Blind, Randomized, Placebo-Controlled Trial of Panax Ginseng for Cancer-Related Fatigue in Patients With Advanced Cancer. J Natl Compr Canc Netw. 2017;15(9):1111-20

  54. Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs. 2009;69(13):1777-98

  55. Bilgi N et al. Imatinib and Panax ginseng: a potential interaction resulting in liver toxicity. Ann Pharmacother. 2010;44(5):926-8

  56. Goey AKL et al. Relevance of in vitro and clinical data for predicting CYP3A4-mediated herb-drug interactions in cancer patients. Cancer Treat Rev. 2013;39(7):773-83

  57. Hermann R et al. Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions. Planta Med. 2012;78(13):1458-77

  58. Malati CY et al. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants. J Clin Pharmacol. 2012;52(6):932-9

  59. de Oliveira Campos MP et al. Guarana (Paullinia cupana) improves fatigue in breast cancer patients undergoing systemic chemotherapy. J Altern Complement Med. 2011;17(6):505-12

  60. da Costa Miranda et al. Effectiveness of guaraná (Paullinia cupana) for postradiation fatigue and depression: results of a pilot double-blind randomized study. J Altern Complement Med. 2009;15(4):431-3

  61. de Melo Sette CV et al. Purified Dry Paullinia cupana (PC-18) Extract for Chemotherapy-Induced Fatigue: Results of Two Double-Blind Randomized Clinical Trials. J Diet Suppl. 2018;15(5):673-83

  62. Yonekura L et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct. 2016;7(7):2970-8

  63. Basile A et al. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. J Ethnopharmacol. 2005;102(1):32-6

  64. Zhang WJ, Frei B. Astragaloside IV inhibits NF- κ B activation and inflammatory gene expression in LPS-treated mice. Mediators Inflamm. 2015;2015:274314

  65. Guo Z et al. In vivo and in vitro immunmodulatory and anti-inflammatory effects of total flavonoids of Astragalus. Afr J Tradit Complement Altern Med. 2016;13(4):60-73

  66. Huang Y et al. Effects of Astragalus Polysaccharides on Dysfunction of Mitochondrial Dynamics Induced by Oxidative Stress. Oxid Med Cell Longev. 2016;2016:9573291

  67. De Bock K et al. Acute Rhodiola rosea intake can improve endurance exercise performance. Int J Sport Nutr Exerc Metab. 2004;14(3):298-307

  68. Darbinyan V et al. Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine. 2000;7(5):365-71

  69. Olsson EM et al. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 2009;75(2):105-12

  70. Lin SSC et al. In vivo Th1 and Th2 cytokine modulation effects of Rhodiola rosea standardised solution and its major constituent, salidroside. Phytother Res. 2011;25(11):1604-11

  71. van Diermen D. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol. 2009;122(2):397-401

  72. Hellum BH et al. Potent in vitro inhibition of CYP3A4 and P-glycoprotein by Rhodiola rosea. Planta Med. 2010;76(4):331-8

  73. Spanakis M et al. Pharmacokinetic interaction between losartan and Rhodiola rosea in rabbits. Pharmacology. 2013;91(1-2):112-6

  74. Thu OK et al. Effect of commercial Rhodiola rosea on CYP enzyme activity in humans. Eur J Clin Pharmacol. 2016;72(3):295-300

  75. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14

  76. David LA et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63

  77. Helmink BA et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377-388

  78. Podolsky SH et al. Metchnikoff and the microbiome. Lancet. 2012;380(9856):1810-1

  79. Kim D et al. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med. 2017;49(5):e339

  80. Lakhan SE et al. Gut inflammation in chronic fatigue syndrome. Nutr Metab (Lond). 2010;7:79

  81. Frémont M et al. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe. 2013;22:50-6

  82. Sheedy JR et al. Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo. 2009;23(4):621-8

  83. Logan AC et al. Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med Hypotheses. 2003;60(6):915-23

  84. Guest DD et al. Diet components associated with perceived fatigue in breast cancer survivors. Eur J Cancer Care (Engl). 2013;22(1):51-9

  85. Groeger D et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes. 2013;4(4):325-39

  86. Lee JY et al. Effects of 12 weeks of probiotic supplementation on quality of life in colorectal cancer survivors: a double-blind, randomized, placebo-controlled trial. Dig Liver Dis. 2014;46(12):1126-32

  87. Frankel AE et al. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia. 2017;19(10):848-55

  88. Routy B et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91-97

  89. Matson V et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104-8

  90. Heshiki Y et al. Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome. 2020;8(1):28

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löffler, C. Zusammenhänge zwischen Fatigue und Mikronährstoffen sowie Darmmikrobiom. InFo Hämatol Onkol 23, 24–31 (2020). https://doi.org/10.1007/s15004-020-8273-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15004-020-8273-3

Navigation