Skip to main content
Log in

Schwerpunkt Pankreaskarzinom

Pathologie des PDAC: Übersicht und Neues

  • Schwerpunkt
  • Published:
InFo Hämatologie + Onkologie Aims and scope

Mit dieser Übersicht erhalten Sie einen kurzen Überblick über den aktuellen Stand und alle wichtigen Aspekte der Pathologie des duktalen Adenokarzinoms des Pankreas (PDAC). Die Übersicht soll alle behandelnden Ärzte in die Lage versetzen, den Pathologiebefund zum PDAC interpretieren zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

1
2
3

Literatur

  1. Hruban RH et al. Pancreatic ductal adenocarcinoma. In: Board TWCoTE (ed) WHO Classification of Tumours. Digestive System Tumours. 2019. IARC Press: Lyon; 322–332

    Google Scholar 

  2. Fitzgerald TL et al. Changing incidence of pancreatic neoplasms: a 16-year review of statewide tumor registry. Pancreas. 2008;37(2):134–8

    Article  Google Scholar 

  3. He J et al. 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxford). 2014;16(1):83–90

    Article  Google Scholar 

  4. Schlitter AM et al. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): Identification of prognostic subtypes. Sci Rep. 2017;7:41064

    Article  CAS  Google Scholar 

  5. Adsay V et al. Foamy gland pattern of pancreatic ductal adenocarcinoma: a deceptively benign-appearing variant. Am J Surg Pathol. 2000;24(4):493–504

    Article  CAS  Google Scholar 

  6. Lüttges J et al. The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol. 2000;191(2):154–61

    Article  Google Scholar 

  7. Basturk O et al. A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol. 2015;39(12):1730–41

    Article  Google Scholar 

  8. Aichler M et al. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol. 2012;226(5):723–34

    Article  CAS  Google Scholar 

  9. Esposito I et al. [New insights into the origin of pancreatic cancer. Role of atypical flat lesions in pancreatic carcinogenesis]. Pathologe. 2012;33 Suppl 2:189–93

    Article  Google Scholar 

  10. Klöppel G et al. Intraductal neoplasms of the pancreas. Semin Diagn Pathol. 2014;31(6):452–66

    Article  Google Scholar 

  11. Schlitter AM et al. [Intraductal papillary neoplasms of the bile duct (IPNB). Diagnostic criteria, carcinogenesis and differential diagnostics]. Pathologe. 2013;34 Suppl 2:235–40

    Article  Google Scholar 

  12. Adsay NV et al. Pathogenesis of colloid (pure mucinous) carcinoma of exocrine organs: Coupling of gel-forming mucin (MUC2) production with altered cell polarity and abnormal cell-stroma interaction may be the key factor in the morphogenesis and indolent behavior of colloid carcinoma in the breast and pancreas. Am J Surg Pathol. 2003;27(5):571–8

    Article  Google Scholar 

  13. Chintanaboina J et al. Autoimmune Pancreatitis: A Diagnostic Challenge for the Clinician. South Med J. 2015;108(9):579–89

    Article  CAS  Google Scholar 

  14. Brierley JD et al. TNM Classification of Malignant Tumours, 8th Edition. 2017. John Wiley & Sons: Hoboken

    Google Scholar 

  15. Demir IE et al. R0 Versus R1 Resection Matters after Pancreaticoduodenectomy, and Less after Distal or Total Pancreatectomy for Pancreatic Cancer. Ann Surg. 2018;268(6):1058–68

    Article  Google Scholar 

  16. Esposito I et al. Most pancreatic cancer resections are R1 resections. Ann Surg Oncol. 2008;15(6):1651–60

    Article  Google Scholar 

  17. Schlitter AM, Esposito I. Definition of microscopic tumor clearance (r0) in pancreatic cancer resections. Cancers (Basel). 2010;2(4):2001–10

    Article  Google Scholar 

  18. Seufferlein T et al. [S3-guideline exocrine pancreatic cancer]. Z Gastroenterol. 2013;51(12):1395–440

    Article  CAS  Google Scholar 

  19. Chatterjee D et al. Histologic grading of the extent of residual carcinoma following neoadjuvant chemoradiation in pancreatic ductal adenocarcinoma: a predictor for patient outcome. Cancer. 2012;118(12):3182–90

    Article  Google Scholar 

  20. Haeberle L, Esposito I. Pathology of pancreatic cancer. Transl Gastroenterol Hepatol. 2019;4:50

    Article  Google Scholar 

  21. Verbeke C et al. Pathology assessment of pancreatic cancer following neoadjuvant treatment: Time to move on. Pancreatology. 2018;18(5):467–76

    Article  Google Scholar 

  22. Zhao Q et al. Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with a better prognosis. Ann Diagn Pathol. 2012;16(1):29–37

    Article  CAS  Google Scholar 

  23. Sinn BV et al. KRAS mutations in codon 12 or 13 are associated with worse prognosis in pancreatic ductal adenocarcinoma. Pancreas. 2014;43(4):578–83

    Article  CAS  Google Scholar 

  24. Heining C et al. NRG1 Fusions in KRAS Wild-Type Pancreatic Cancer. Cancer Discov. 2018;8(9):1087–95

    Article  CAS  Google Scholar 

  25. Jones MR et al. NRG1 Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in KRAS Wild-Type Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2019;25(15):4674–81

    PubMed  Google Scholar 

  26. Jones S et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6

    Article  CAS  Google Scholar 

  27. Bailey P et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52

    Article  CAS  Google Scholar 

  28. Collisson EA et al. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20

    Article  Google Scholar 

  29. Collisson EA et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3

    Article  CAS  Google Scholar 

  30. Moffitt RA et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78

    Article  CAS  Google Scholar 

  31. Waddell N et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501

    Article  CAS  Google Scholar 

  32. Muckenhuber A et al. Pancreatic Ductal Adenocarcinoma Subtyping Using the Biomarkers Hepatocyte Nuclear Factor-1A and Cytokeratin-81 Correlates with Outcome and Treatment Response. Clin Cancer Res. 2018;24(2):351–9

    Article  CAS  Google Scholar 

  33. Noll EM et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat Med. 2016;22(3):278–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Melissa Schlitter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlitter, A.M., Kasajima, A., Groß, C. et al. Pathologie des PDAC: Übersicht und Neues. Info Onkol. 22, 10–15 (2019). https://doi.org/10.1007/s15004-019-6744-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15004-019-6744-1

Navigation