InFo Hämatologie + Onkologie

, Volume 22, Issue 4, pp 19–23 | Cite as

Schwerpunkt triple-negatives Mammkarzinom

Adjuvante Radiotherapie beim triple-negativen Mammakarzinom

  • Anna-Lena Hottinger
  • Frank ZimmermannEmail author

Auch wenn die adjuvante Radiotherapie in der Klinik primär am allgemeinen Risikoprofil der Patientin — und weniger am molekularen Subtyp der Erkrankung ausgerichtet wird —, gibt es theoretische und empirische Befunde, die für eine besondere Bedeutung der Radiotherapie bei triple-negativen Mammkarzinomen sprechen. Diese könnte auch im Zusammenhang mit modernen systemischen Behandlungen wie der Immuntherapie noch zunehmen. Ein Überblick.


  1. 1.
    Fisher B et al. Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med. 1995;333(22):1456–61CrossRefGoogle Scholar
  2. 2.
    Bartelink H et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001;345(19):1378–87CrossRefGoogle Scholar
  3. 3.
    Hottinger A et al. Personalisierte adjuvante Strahlentherapie beim nodal-negativen Brustkrebs. InFo Onkologie. 2017;20(6):34–43CrossRefGoogle Scholar
  4. 4.
    Goldhirsch A et al. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–47CrossRefGoogle Scholar
  5. 5.
    Kyndi M et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol. 2008;26(9):1419–26CrossRefGoogle Scholar
  6. 6.
    Meyers MO et al. Impact of breast cancer molecular subtypes on locoregional recurrence in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol. 2011;18(10):2851–7CrossRefGoogle Scholar
  7. 7.
    Nguyen PL et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol. 2008;26(14):2373–8CrossRefGoogle Scholar
  8. 8.
    Nishimura R, Arima N. Is triple negative a prognostic factor in breast cancer? Breast Cancer. 2008;15(4):303–8CrossRefGoogle Scholar
  9. 9.
    Steward LT et al. Impact of radiation therapy on survival in patients with triple-negative breast cancer. Oncol Lett. 2014;7(2):548–552CrossRefGoogle Scholar
  10. 10.
    Whelan TJ et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20CrossRefGoogle Scholar
  11. 11.
    Bane AL et al. Tumor factors predictive of response to hypofractionated radiotherapy in a randomized trial following breast conserving therapy. Ann Oncol. 2014;25(5):992–8CrossRefGoogle Scholar
  12. 12.
    Bernier J, Poortmans PM. Surgery and radiation therapy of triple-negative breast cancers: From biology to clinics. Breast. 2016;28:148–55CrossRefGoogle Scholar
  13. 13.
    EBCTCG (Early Breast Cancer Trialists' Collaborative Group) et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35CrossRefGoogle Scholar
  14. 14.
    Ragaz J et al. Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J Natl Cancer Inst. 2005;97(2):116–26CrossRefGoogle Scholar
  15. 15.
    Wang J et al. Adjuvant chemotherapy and radiotherapy in triple-negative breast carcinoma: a prospective randomized controlled multi-center trial. Radiother Oncol. 2011;100(2):200–4CrossRefGoogle Scholar
  16. 16.
    Yao Y et al. Radiotherapy after surgery has significant survival benefits for patients with triple-negative breast cancer. Cancer Med. 2019;8(2):554–563CrossRefGoogle Scholar
  17. 17.
    Haque W et al. Postmastectomy radiation therapy for triple negative, node-negative breast cancer. Radiother Oncol. 2019;132:48–54CrossRefGoogle Scholar
  18. 18.
    Goldhirsch A et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–23CrossRefGoogle Scholar
  19. 19.
    Recht A et al. Postmastectomy radiotherapy: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001;19(5):1539–69CrossRefGoogle Scholar
  20. 20.
    Senkus E et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v8–30CrossRefGoogle Scholar
  21. 21.
    Abdulkarim BS et al. Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J Clin Oncol. 2011;29(21):2852–8CrossRefGoogle Scholar
  22. 22.
    Dragun AE et al. Locoregional recurrence in patients with triple-negative breast cancer: preliminary results of a single institution study. Am J Clin Oncol. 2011;34(3):231–7CrossRefGoogle Scholar
  23. 23.
    Gradishar WJ et al. Breast Cancer Version 2.2015. J Natl Compr Canc Netw. 2015;13(4):448–75CrossRefGoogle Scholar
  24. 24.
    Rusthoven CG et al. The impact of postmastectomy and regional nodal radiation after neoadjuvant chemotherapy for clinically lymph node-positive breast cancer: a National Cancer Database (NCDB) analysis. Ann Oncol. 2016;27(5):818–27CrossRefGoogle Scholar
  25. 25.
    Park HS et al. Immortal time bias: a frequently unrecognized threat to validity in the evaluation of postoperative radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(5):1365–73CrossRefGoogle Scholar
  26. 26.
    Rastogi P et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85CrossRefGoogle Scholar
  27. 27.
    Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39CrossRefGoogle Scholar
  28. 28.
    Anders CK et al. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9 Suppl 2:S73–81CrossRefGoogle Scholar
  29. 29.
    Carey LA et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34CrossRefGoogle Scholar
  30. 30.
    Di Leo A et al. New approaches for improving outcomes in breast cancer in Europe. Breast. 2015;24(4):321–30CrossRefGoogle Scholar
  31. 31.
    Stutz E et al. Hyperthermie in der Krebsbehandlung. Pipette SULM. 2017(6):13-4Google Scholar
  32. 32.
    Overgaard J et al. The heat is (still) on—the past and future of hyperthermic radiation oncology. Radiother Oncol. 2013;109(2):185–7CrossRefGoogle Scholar
  33. 33.
    Oei AL et al. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol. 2015;10:165CrossRefGoogle Scholar
  34. 34.
    Datta NR et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742–53CrossRefGoogle Scholar
  35. 35.
    Peeken JC et al. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front Oncol. 2017;7:132CrossRefGoogle Scholar
  36. 36.
    Langlands FE et al. Breast cancer subtypes: response to radiotherapy and potential radiosensitisation. Br J Radiol. 2013;86(1023):20120601CrossRefGoogle Scholar
  37. 37.
    Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;Suppl 4:2–8CrossRefGoogle Scholar
  38. 38.
    Schneider BP et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14(24):8010–8CrossRefGoogle Scholar
  39. 39.
    Wang L et al. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest New Drugs. 2012;30(6):2113–20CrossRefGoogle Scholar
  40. 40.
    Jézéquel P et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015;17:43CrossRefGoogle Scholar
  41. 41.
    Adams S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66CrossRefGoogle Scholar
  42. 42.
    La Rocca E et al. Radiotherapy with the anti-programmed cell death ligand-1 immune checkpoint blocker avelumab: acute toxicities in triple-negative breast cancer. Med Oncol. 2018;36(1):4CrossRefGoogle Scholar
  43. 43.
    Louvel G et al. Immunotherapy and pulmonary toxicities: can concomitant immune-checkpoint inhibitors with radiotherapy increase the risk of radiation pneumonitis? Eur Respir J. 2018;51(1). pii: 1701737CrossRefGoogle Scholar
  44. 44.
    Luke JJ et al. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors. J Clin Oncol. 2018;36(16):1611–8CrossRefGoogle Scholar
  45. 45.
    Shaverdian N et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017 Jul;18(7):895–903CrossRefGoogle Scholar
  46. 46.
    Wushou A et al. Development of triple-negative breast cancer radiosensitive gene signature and validation based on transcriptome analysis. Breast Cancer Res Treat. 2015;154(1):57–62CrossRefGoogle Scholar
  47. 47.
    Eschrich S et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys. 2009;75(2):497–505CrossRefGoogle Scholar
  48. 48.
    Scott JG et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017;18(2):202–11CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Strahlentherapie und RadioonkologieUniversitätsspital BaselBaselSchweiz

Personalised recommendations