Skip to main content
Log in

Moderne Therapiestrategien bei hirneigenen glialen Tumoren

Gliome

  • zertifizierte fortbildung
  • Published:
Info Onkologie Aims and scope

Zusammenfassung

Die Kombination von Radio- und Chemotherapie kann das Gesamtüberleben von Patienten mit Gliomen signifikant verbessern. Dabei stehen heute neben der lokalen Kontrolle vor allem auch die Erhaltung der Lebensqualität und der neurokognitiven Funktion im Langzeitverlauf im Vordergrund.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

1
2
3

Literatur

  1. Pallud J et al. Pregnancy increases the growth rates of World Health Organization grade II gliomas. Ann Neurol. 2010;67(3):398–404.

    PubMed  Google Scholar 

  2. Louis DN et al. WHO classification of tumours of the central nervous system. Lyon: IARC; 2007.

  3. Herrlinger U et al. Gliomatosis cerebri: molecular pathology and clinical course. Ann Neurol. 2002;52(4):390–9.

    Article  CAS  PubMed  Google Scholar 

  4. Glas M et al. NOA-05 phase 2 trial of procarbazine and lomustine therapy in gliomatosis cerebri. Ann Neurol. 2011;70(3):445–53.

    Article  CAS  PubMed  Google Scholar 

  5. Sanson M et al. Initial chemotherapy in gliomatosis cerebri. Neurology. 2004;63(2):270–5.

    Article  CAS  PubMed  Google Scholar 

  6. Wick W et al. IDH1 mutations determine the prognostic versus predictive value of MGMT promoter methylation in malignant gliomas. Neurology, akzeptiert.

  7. Weller M et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol. 2010;6(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  8. Weller M et al. Personalized care in neuro-oncology coming of age: why we need MGMT and 1p/19q testing for malignant glioma patients in clinical practice. Neuro Oncol. 2012;14(Suppl 4):iv100–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Yan H et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hartmann C et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120(6):707–18.

    Article  PubMed  Google Scholar 

  11. Macdonald DR et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277-80.

    Google Scholar 

  12. Wen PY et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  13. Scott JN et al. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology. 2002;59(6):947–9.

    CAS  Google Scholar 

  14. Grant R et al. Chemotherapy response criteria in malignant glioma. Neurology. 1997;48(5):1336–40.

    Article  CAS  PubMed  Google Scholar 

  15. Prados M et al. Response as a predictor of survival in patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2011;13(1):143–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Galanis E et al. Phase 2 trial design in neuro-oncology revisited: a report from the RANO group. Lancet Oncol. 2012;13(5):e196–204.

    Article  PubMed  Google Scholar 

  17. Rachinger W et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 2005;57(3):505–11.

    Article  PubMed  Google Scholar 

  18. Kunz M et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 2011;13(3):307–16.

    Article  Google Scholar 

  19. Hutterer M et al. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013;15(3):341–51.

    Article  Google Scholar 

  20. Stummer W et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  21. Stummer W et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564–76.

    Article  PubMed  Google Scholar 

  22. Stummer W et al. Favorable outcome in the elderly cohort treated by concomitant temozolomide radiochemotherapy in a multicentric phase II safety study of 5-ALA. J Neurooncol. im Druck.

  23. Kreth FW et al. The place of interstitial brachytherapy and radiosurgery for low-grade gliomas. Adv Tech Stand Neurosurg. 2010;35:183–212.

    CAS  PubMed  Google Scholar 

  24. Combs SE et al. Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol. 2005;23(34):8863–9.

    Article  PubMed  Google Scholar 

  25. Fogh SE et al. Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol. 2010;28(18):3048–53.

    Article  PubMed  Google Scholar 

  26. Wick W et al. A phase II, randomized open-label, multi-center study of weekls APG101 + reirradiation versus reirradiation in the treatment of patients with recurrent glioblastoma. ECC. 2013; Abstr 3304.

  27. Griffin CA et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65(10):988–94.

    Google Scholar 

  28. Jenkins RB et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res.2006;66(20):9852–61.

    Article  CAS  PubMed  Google Scholar 

  29. van den Bent MJ et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31(3):344–50.

    Article  Google Scholar 

  30. Cairncross G et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013;31(3):337–43.

    Article  Google Scholar 

  31. Wick W et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol. 2009;27(35):5874–80.

    Article  CAS  PubMed  Google Scholar 

  32. Stupp R et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  33. Hegi ME et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  Google Scholar 

  34. Wick W et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012;13(7):707–15.

    Article  CAS  PubMed  Google Scholar 

  35. Malmström A et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–26.

    Article  PubMed  Google Scholar 

  36. Soffietti R et al. Guidelines on management of low-grade gliomas: report of an EFNS-EANO Task Force. Eur J Neurol. 2010;17(9):1124–33.

    Article  CAS  PubMed  Google Scholar 

  37. Weiler M, Wick W. Molecular predictors of outcome in low-grade glioma. Curr Opin Neurol. 2012;25(6):767–73.

    Article  PubMed  Google Scholar 

  38. Wick W et al. Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncol. 2011;13(6):566–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Weller M et al. Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol. 2013;15(1):4–27.

    Google Scholar 

  40. Wick W et al. Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol. 2010;28(12):e188–9.

    Article  PubMed  Google Scholar 

  41. Friedman HS et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.

    Article  CAS  PubMed  Google Scholar 

  42. Amberger-Murphy V. Hypoxia helps glioma to fight therapy. Curr Cancer Drug Targets. 2009;9(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  43. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  44. Wick W et al. Tumor response based on adapted Macdonald criteria and assessment of pseudoprogression (PsPD) in the phase III AVAglio trial of bevacizumab (Bv) plus temozolomide (T) plus radiotherapy (RT) in newly diagnosed glioblastoma (GBM). J Clin Oncol 2013;31(Suppl); abstr 2002.

  45. Roth P et al. Steroids in neurooncology: actions, indications, side-effects. Curr Opin Neurol. 2010;23(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  46. Weller M et al. Epilepsy meets cancer: when, why, and what to do about it? Lancet Oncol. 2012;13(9):e375–82.

    Article  PubMed  Google Scholar 

  47. Wick W et al. Pharmacotherapy of epileptic seizures in glioma patients: who, when, why and how long? Onkologie. 2005;28(8-9):391–6.

    Article  CAS  PubMed  Google Scholar 

  48. Klein M et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet. 2002;360(9343):1361–8.

    Article  CAS  PubMed  Google Scholar 

  49. Marras LC et al. The risk of venous thromboembolism is increased throughout the course of malignant glioma: an evidence-based review. Cancer. 2000;89(3):640–6.

    Article  CAS  PubMed  Google Scholar 

  50. Perry JR et al. PRODIGE: a randomized placebo-controlled trial of dalteparin low-molecular-weight heparin thromboprophylaxis in patients with newly diagnosed malignant glioma. J Thromb Haemost. 2010;8(9):1959–65.

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt F et al. Low molecular weight heparin for deep vein thrombosis in glioma patients. J Neurol. 2002;249(10):1409–12.

    Article  CAS  PubMed  Google Scholar 

  52. Keime-Guibert F et al. Radiotherapy for glioblastoma in the elderly. N Engl J Med. 2007;356(15):1527–35.

    Article  CAS  PubMed  Google Scholar 

  53. Roa W et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol. 2004;22(9):1583–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wiestler B et al. Malignant astrocytomas of elderly patients lack favorable molecular markers: an analysis of the NOA-08 study collective. Neuro Oncol. 2013;15(8):1017–26.

    Google Scholar 

  55. Primäre Tumoren und Metastasen im zentralen Nervensystem. In: Dietel M, Suttorp N,Zeitz M. (Hrsg): Harrisons Innere Medizin (Deutsche Ausgabe). Berlin: ABW Wissenschaftsverlag; 2012. S.3660-72.

  56. Bendszus M, Platten M. Neuroradiologische Responsekriterien bei malignen Gliomen. Nervenarzt. 2010;81(8):950–5.

    Article  CAS  PubMed  Google Scholar 

  57. Pignatti F et al. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol. 2002;20(8):2076–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wick.

Additional information

Interessenkonflikt

Die Autoren erklären, dass sie sich bei der Erstellung des Beitrags von keinen wirtschaftlichen Interessen leiten ließen. Prof. Wick erhält Forschungsunterstützung von Apogenix, Boehringer Ingelheim, Eli Lilly, MSD und Roche. Er hat außerdem persönliche Vortragshonorare von MSD und Roche erhalten. Er ist Mitglied des Steering Committees der AVAglio-Studie und von Advisory Boards der Formen MSD, Magforce und Roche/Genentech. Er ist außer-dem Studienleiter der EORTC-26101- und 26082-Studien und der APG101 sowie Sprecher der Hirntumorgruppe der EORTC und stellvertretender Sprecher der NOA.

Der Verlag erklärt, dass die inhaltliche Qualität des Beitrags von zwei unabhängigen Gutachtern geprüft wurde. Werbung in dieser Zeitschriftenausgabe hat keinen Bezug zur CME-Fortbildung. Der Verlag garantiert, dass die CME-Fortbildung sowie die CME- Fragen frei sind von werblichen Aussagen und keinerlei Produktempfehlungen enthalten. Dies gilt insbesondere für Präparate, die zur Therapie des dargestellten Krankheitsbildes geeignet sind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wick, W., Platten, M. Moderne Therapiestrategien bei hirneigenen glialen Tumoren. Info Onkol. 16, 32–43 (2013). https://doi.org/10.1007/s15004-013-0549-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15004-013-0549-4

Navigation