Skip to main content
Log in

Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background

Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches.

Methods

This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on.

Results

There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored.

Conclusion

Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed are included in this article. Further inquiries can be directed to the corresponding author.

References

  1. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49:35–43.

    Article  CAS  PubMed  Google Scholar 

  2. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–25.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci. 2016;17:2085.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, et al. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol. 2023;32:570–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  6. Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol. 2023;15:a041231.

    Article  CAS  PubMed  Google Scholar 

  7. Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK, Hsu CK. Inflammation in Wound Healing and Pathological Scarring. Adv Wound Care (New Rochelle). 2023;12:288–300.

    Article  PubMed  Google Scholar 

  8. Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp Dermatol. 2021;30:146–61.

    Article  CAS  PubMed  Google Scholar 

  9. Moulin V, Larochelle S, Langlois C, Thibault I, Lopez-Vallé CA, Roy M. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol. 2004;198:350–8.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Wang Y, Wang X, Lin L, Wang P, Sun J, et al. The Effects of the Transforming Growth Factor-β1 (TGF-β1) Signaling Pathway on Cell Proliferation and Cell Migration are Mediated by Ubiquitin Specific Protease 4 (USP4) in Hypertrophic Scar Tissue and Primary Fibroblast Cultures. Med Sci Monit. 2020;26:e920736.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo S, Benathan M, Raffoul W, Panizzon RG, Egloff DV. Abnormal balance between proliferation and apoptotic cell death in fibroblasts derived from keloid lesions. Plast Reconstr Surg. 2001;107:87–96.

    Article  CAS  PubMed  Google Scholar 

  12. Schmieder SJ, Ferrer-Bruker SJ. Hypertrophic Scarring. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.

  13. Barone N, Safran T, Vorstenbosch J, Davison PG, Cugno S, Murphy AM. Current Advances in Hypertrophic Scar and Keloid Management. Semin Plast Surg. 2021;35:145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175:2454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goren I, Allmann N, Yogev N, Schürmann C, Linke A, Holdener M, et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol. 2009;175:132–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004;359:839–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology. 2011;216:753–62.

    Article  PubMed  Google Scholar 

  18. Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J Tissue Eng Regen Med. 2019;13:99–109.

    CAS  PubMed  Google Scholar 

  19. Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol. 2021;12: 681710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao X, Lu C, Miao Y, Ren J, Cai X. Role of macrophage polarisation in skin wound healing. Int Wound J. 2023;20:2551–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249:158–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Becker L, Liu NC, Averill MM, Yuan W, Pamir N, Peng Y, et al. Unique proteomic signatures distinguish macrophages and dendritic cells. PLoS One. 2012;7:e33297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takamiya M, Fujita S, Saigusa K, Aoki Y. Simultaneous detection of eight cytokines in human dermal wounds with a multiplex bead-based immunoassay for wound age estimation. Int J Legal Med. 2008;122:143–8.

    Article  PubMed  Google Scholar 

  25. Kotwal GJ, Chien S. Macrophage Differentiation in Normal and Accelerated Wound Healing. Results Probl Cell Differ. 2017;62:353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  27. Han X, Hu J, Zhao W, Lu H, Dai J, He Q. Hexapeptide induces M2 macrophage polarization via the JAK1/STAT6 pathway to promote angiogenesis in bone repair. Exp Cell Res. 2022;413: 113064.

    Article  CAS  PubMed  Google Scholar 

  28. Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 2011;51:267–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Idriss HT, Naismith JH. TNF α and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50:184–95.

    Article  CAS  PubMed  Google Scholar 

  30. Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20:87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma X. TNF-α and IL-12: a balancing act in macrophage functioning. Microbes Infect. 2001;3:121–9.

    Article  CAS  PubMed  Google Scholar 

  32. Chong DLW, Trinder S, Labelle M, Rodriguez-Justo M, Hughes S, Holmes AM, et al. Platelet-derived transforming growth factor-β1 promotes keratinocyte proliferation in cutaneous wound healing. J Tissue Eng Regen Med. 2020;14:645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines. 2020;8:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6: a016295.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hosaka Y, Itoh K, Matsutani S, Kawate S, Miura A, Mizoura Y, et al. Fermented food Tempeh induces interleukin 12 and enhances macrophage phagocytosis. J Food Biochem. 2021;45: e13958.

    Article  CAS  PubMed  Google Scholar 

  36. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.

    Article  CAS  PubMed  Google Scholar 

  37. Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12:231–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, et al. Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. Nanoscale. 2021;13:15445–63.

    Article  CAS  PubMed  Google Scholar 

  39. Wang ZC, Zhao WY, Cao Y, Liu YQ, Sun Q, Shi P, et al. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol. 2020;11: 603187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vaz da Silva Enderlin Z, Lehr HA, Velin D. In vitro and in vivo repair activities of undifferentiated and classically and alternatively activated macrophages. Pathobiology. 2014;81:86–93.

    Article  Google Scholar 

  41. Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci. 2019;224:222–31.

    Article  CAS  PubMed  Google Scholar 

  42. Foey AD. Macrophages—Masters of Immune Activation, Suppression and Deviation [Internet]. Immune Response Activation. InTech; 2014. [Accessed 20th May 2024] Available from.

  43. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106:345–58.

    Article  CAS  PubMed  Google Scholar 

  44. Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood. 2007;110:4319–30.

    Article  CAS  PubMed  Google Scholar 

  45. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol. 2001;167:6533–44.

    Article  CAS  PubMed  Google Scholar 

  46. Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5: e1000371.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30:245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Glim JE, Niessen FB, Everts V, van Egmond M, Beelen RH. Platelet derived growth factor-CC secreted by M2 macrophages induces α-smooth muscle actin expression by dermal and gingival fibroblasts. Immunobiology. 2013;218:924–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lodyga M, Cambridge E, Karvonen HM, Pakshir P, Wu B, Boo S, et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci Signal. 2019;12:3469.

    Article  CAS  Google Scholar 

  50. Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, et al. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen. 2013;21:428–36.

    Article  PubMed  Google Scholar 

  51. Shi J, Li J, Guan H, Cai W, Bai X, Fang X, et al. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts. PLoS One. 2014;9:e98228.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shi J, Wang H, Guan H, Shi S, Li Y, Wu X, et al. IL10 inhibits starvation-induced autophagy in hypertrophic scar fibroblasts via cross talk between the IL10-IL10R-STAT3 and IL10-AKT-mTOR pathways. Cell Death Dis. 2016;7: e2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi J, Shi S, Xie W, Zhao M, Li Y, Zhang J, et al. IL-10 alleviates lipopolysaccharide-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts. J Cell Mol Med. 2021;25:1554–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Müller W, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184:3964–77.

    Article  CAS  PubMed  Google Scholar 

  55. Kodelja V, Müller C, Tenorio S, Schebesch C, Orfanos CE, Goerdt S. Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology. 1997;197:478–93.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H, Zhang S, Dang X, Lin L, Ren L, Song R. GPNMB plays an active role in the M1/M2 balance. Tissue Cell. 2022;74: 101683.

    Article  CAS  PubMed  Google Scholar 

  57. Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-γ and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol. 2007;178:6557–66.

    Article  CAS  PubMed  Google Scholar 

  58. Yu B, Alboslemy T, Safadi F, Kim MH. Glycoprotein Nonmelanoma Clone B Regulates the Crosstalk between Macrophages and Mesenchymal Stem Cells toward Wound Repair. J Invest Dermatol. 2018;138:219–27.

    Article  CAS  PubMed  Google Scholar 

  59. Silva WN, Prazeres PHDM, Paiva AE, Lousado L, Turquetti AOM, Barreto RSN, et al. Macrophage-derived GPNMB accelerates skin healing. Exp Dermatol. 2018;27:630–5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kim HJ, Kim IS. Transforming growth factor-β-induced gene product, as a novel ligand of integrin αMβ2, promotes monocytes adhesion, migration and chemotaxis. Int J Biochem Cell Biol. 2008;40:991–1004.

    Article  CAS  PubMed  Google Scholar 

  61. Bae JS, Lee SH, Kim JE, Choi JY, Park RW, Yong Park J, et al. Βig-h3 supports keratinocyte adhesion, migration, and proliferation through α3β1 integrin. Biochem Biophys Res Commun. 2002;294:940–8.

    Article  CAS  PubMed  Google Scholar 

  62. LeBaron RG, Bezverkov KI, Zimber MP, Pavelec R, Skonier J, Purchio AF. Β IG-H3, a novel secretory protein inducible by transforming growth factor-β, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro. J Invest Dermatol. 1995;104:844–9.

    Article  CAS  PubMed  Google Scholar 

  63. Nacu N, Luzina IG, Highsmith K, Lockatell V, Pochetuhen K, Cooper ZA, et al. Macrophages produce TGF-β-induced (β-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J Immunol. 2008;180:5036–44.

    Article  CAS  PubMed  Google Scholar 

  64. Martinot V, Mitchell V, Fevrier P, Duhamel A, Pellerin P. Comparative study of split thickness skin grafts taken from the scalp and thigh in children. Burns. 1994;20:146–50.

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Chen H, Tian R, Zhang Y, Drutskaya MS, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dong X, Mao S, Wen H. Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review). Biomed Rep. 2013;1:833–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ogawa R. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. Int J Mol Sci. 2017;18:606.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huang C, Nie F, Qin Z, Li B, Zhao X. A snapshot of gene expression signatures generated using microarray datasets associated with excessive scarring. Am J Dermatopathol. 2013;35:64–73.

    Article  PubMed  Google Scholar 

  69. Chen W, Fu X, Sun T, Sun X, Zhao Z, Sheng Z. Change of gene expression of transforming growth factor-β1, Smad 2 and Smad 3 in hypertrophic scars skins. Zhonghua Wai Ke Za Zhi. 2002;40:17–9.

    PubMed  Google Scholar 

  70. Kryger ZB, Sisco M, Roy NK, Lu L, Rosenberg D, Mustoe TA. Temporal expression of the transforming growth factor-Β pathway in the rabbit ear model of wound healing and scarring. J Am Coll Surg. 2007;205:78–88.

    Article  PubMed  Google Scholar 

  71. Lu L, Chen YL, Zhang QG. Distribution and expression of transforming growth factor β and their receptors in hypertrophic scar. Zhonghua Shao Shang Za Zhi. 2004;20:30–3.

    CAS  PubMed  Google Scholar 

  72. Yang JH, Yoon JY, Moon J, Min S, Kwon HH, Suh DH. Expression of inflammatory and fibrogenetic markers in acne hypertrophic scar formation: focusing on role of TGF-β and IGF-1R. Arch Dermatol Res. 2018;310:665–73.

    Article  CAS  PubMed  Google Scholar 

  73. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-β signal transduction. J Cell Sci. 2001;114:4359–69.

    Article  CAS  PubMed  Google Scholar 

  74. Honardoust D, Varkey M, Marcoux Y, Shankowsky HA, Tredget EE. Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring. J Burn Care Res. 2012;33:218–27.

    Article  PubMed  Google Scholar 

  75. Hu ZC, Tang B, Guo D, Zhang J, Liang YY, Ma D, et al. Expression of insulin-like growth factor-1 receptor in keloid and hypertrophic scar. Clin Exp Dermatol. 2014;39:822–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li X, Wang Y, Yuan B, Yang H, Qiao L. Status of M1 and M2 type macrophages in keloid. Int J Clin Exp Pathol. 2017;10:11098–105.

    PubMed  PubMed Central  Google Scholar 

  77. Feng C, Shan M, Xia Y, Zheng Z, He K, Wei Y, et al. Single-cell RNA sequencing reveals distinct immunology profiles in human keloid. Front Immunol. 2022;13: 940645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seoudy WM, Mohy El Dien SM, Abdel Reheem TA, Elfangary MM, Erfan MA. Macrophages of the M1 and M2 types play a role in keloids pathogenesis. Int Wound J. 2023;20:38–45.

    Article  PubMed  Google Scholar 

  79. Zhang X, Wu X, Li D. The Communication from Immune Cells to the Fibroblasts in Keloids: Implications for Immunotherapy. Int J Mol Sci. 2023;24:15475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen L, Wang J, Li S, Yu Z, Liu B, Song B, et al. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. Int Wound J. 2019;16:360–9.

    Article  PubMed  Google Scholar 

  81. Butzelaar L, Schooneman DP, Soykan EA, Talhout W, Ulrich MM, van den Broek LJ, et al. Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol. 2016;25:797–804.

    Article  CAS  PubMed  Google Scholar 

  82. van den Broek LJ, van der Veer WM, de Jong EH, Gibbs S, Niessen FB. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Exp Dermatol. 2015;24:623–9.

    Article  PubMed  Google Scholar 

  83. Xu X, Gu S, Huang X, Ren J, Gu Y, Wei C, et al. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma. 2020;8:tkaa006.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000;12:671–6.

    Article  CAS  PubMed  Google Scholar 

  85. Shan M, Wang Y. Viewing keloids within the immune microenvironment. Am J Transl Res. 2022;14:718–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem. 2022;298: 101530.

    Article  CAS  PubMed  Google Scholar 

  88. Lv X, He Z, Yang M, Wang L, Fu S. Analysis of subsets and localization of macrophages in skin lesions and peripheral blood of patients with keloids. Heliyon. 2024;10: e24034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair Regen. 2016;24:644–56.

    Article  PubMed  Google Scholar 

  90. Jin Q, Gui L, Niu F, Yu B, Lauda N, Liu J, et al. Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells. Exp Cell Res. 2018;362:472–6.

    Article  CAS  PubMed  Google Scholar 

  91. Fujiwara M, Muragaki Y, Ooshima A. Upregulation of transforming growth factor-β1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity. Arch Dermatol Res. 2005;297:161–9.

    Article  CAS  PubMed  Google Scholar 

  92. Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M. Interleukin 4 Reduces Brain Hyperexcitability after Traumatic Injury by Downregulating TNF-α, Upregulating IL-10/TGF-β, and Potential Directing Macrophage/Microglia to the M2 Anti-inflammatory Phenotype. Inflammation. 2023;46:1810–31.

    Article  CAS  PubMed  Google Scholar 

  93. Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87:59–67.

    Article  CAS  PubMed  Google Scholar 

  94. Koh TJ, Novak ML, Mirza RE. Assessing macrophage phenotype during tissue repair. Methods Mol Biol. 2013;1037:507–18.

    Article  CAS  PubMed  Google Scholar 

  95. Li YH, Zhang Y, Pan G, Xiang LX, Luo DC, Shao JZ. Occurrences and Functions of Ly6Chi and Ly6Clo Macrophages in Health and Disease. Front Immunol. 2022;13: 901672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang J, Qiao Q, Liu M, He T, Shi J, Bai X, et al. IL-17 Promotes Scar Formation by Inducing Macrophage Infiltration. Am J Pathol. 2018;188:1693–702.

    Article  CAS  PubMed  Google Scholar 

  97. Song H, Tan J, Fu Q, Huang L, Ao M. Comparative efficacy of intralesional triamcinolone acetonide injection during early and static stage of pathological scarring. J Cosmet Dermatol. 2019;18:874–8.

    Article  PubMed  Google Scholar 

  98. Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Front Immunol. 2019;10:1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sheng M, Chen Y, Li H, Zhang Y, Zhang Z. The application of corticosteroids for pathological scar prevention and treatment: current review and update. Burns Trauma. 2023:11:tkad009.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Haideri SS, McKinnon AC, Taylor AH, Kirkwood P, Starkey Lewis PJ, O’Duibhir E, et al. Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury. NPJ Regen Med. 2017;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Smigiel KS, Parks WC. Macrophages, Wound Healing, and Fibrosis: Recent Insights. Curr Rheumatol Rep. 2018;20:17.

    Article  PubMed  Google Scholar 

  102. Jetten N, Roumans N, Gijbels MJ, Romano A, Post MJ, de Winther MP, et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One. 2014;9:e102994.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Theocharidis G, Rahmani S, Lee S, Li Z, Lobao A, Kounas K, et al. Murine macrophages or their secretome delivered in alginate dressings enhance impaired wound healing in diabetic mice. Biomaterials. 2022;288: 121692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee S, Kivimäe S, Dolor A, Szoka FC. Macrophage-based cell therapies: The long and winding road. J Control Release. 2016;240:527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13:366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One. 2014;9:e88348.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol. 2018;9:419.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33:222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Manso GMDC, Elias-Oliveira J, Guimarães JB, Pereira ÍS, Rodrigues VF, Burger B, et al. Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile. Regen Ther. 2023;22:79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009;113:6576–83.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010;28:1856–68.

    Article  CAS  PubMed  Google Scholar 

  113. Zhao Y, Zhu XY, Song T, Zhang L, Eirin A, Conley S, et al. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching. Am J Physiol Renal Physiol. 2021;320:F454–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSC-Derived Exosome Promotes M2 Polarization and Enhances Cutaneous Wound Healing. Stem Cells Int. 2019;2019:7132708.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Formigli L, Paternostro F, Tani A, Mirabella C, Quattrini Li A, Nosi D, et al. MSCs seeded on bioengineered scaffolds improve skin wound healing in rats. Wound Repair Regen. 2015;23:115–23.

    Article  PubMed  Google Scholar 

  116. Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, et al. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol. 2024;15:1345779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, et al. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med. 2024;18:258–84.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther. 2022;13:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol. 2021;97: 107823.

    Article  CAS  PubMed  Google Scholar 

  120. Hoang DH, Nguyen TD, Nguyen HP, Nguyen XH, Do PTX, Dang VD, et al. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol Biosci. 2020;7:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med. 2016;5:1425–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu Y, Zhang M, Liao Y, Chen H, Su D, Tao Y, et al. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing. Front Immunol. 2023;14:1142088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. An Y, Lin S, Tan X, Zhu S, Nie F, Zhen Y, et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021;54: e12993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou X, Brown BA, Siegel AP, El Masry MS, Zeng X, Song W, et al. Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing. ACS Nano. 2020;14:12732–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cowin AJ, Holmes TM, Brosnan P, Ferguson MW. Expression of TGF-β and its receptors in murine fetal and adult dermal wounds. Eur J Dermatol. 2001;11:424–31.

    CAS  PubMed  Google Scholar 

  126. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-β 1 and TGF-β 2 or exogenous addition of TGF-β 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108:985–1002.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang T, Rong XZ, Yang RH, Li TZ, Xu YB. Effect of asiaticoside on the expression of transforming growth factor-β mRNA and matrix metalloproteinases in hypertrophic scars. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26:67–70.

    PubMed  Google Scholar 

  128. Xia Z, Wang J, Yang S, Liu C, Qin S, Li W, et al. Emodin alleviates hypertrophic scar formation by suppressing macrophage polarization and inhibiting the Notch and TGF-β pathways in macrophages. Braz J Med Biol Res. 2021;54: e11184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang X, Qian Y, Jin R, Wo Y, Chen J, Wang C, et al. Effects of TRAP-1-like protein (TLP) gene on collagen synthesis induced by TGF-β/Smad signaling in human dermal fibroblasts. PLoS One. 2013;8:e55899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang Y, Zhao H, Zhang Y, Tang Y, Shi X, Jiang S, et al. Enhancement of Zyxin Promotes Skin Fibrosis by Regulating FAK/PI3K/AKT and TGF-β Signaling Pathways via Integrins. Int J Biol Sci. 2023;19:2394–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev. 2008;223:114–31.

    Article  PubMed  Google Scholar 

  132. Wills-Karp M, Nathan A, Page K, Karp CL. New insights into innate immune mechanisms underlying allergenicity. Mucosal Immunol. 2010;3:104–10.

    Article  CAS  PubMed  Google Scholar 

  133. Shi CK, Zhao YP, Ge P, Huang GB. Therapeutic effect of interleukin-10 in keloid fibroblasts by suppression of TGF-β/Smad pathway. Eur Rev Med Pharmacol Sci. 2019;23:9085–92.

    PubMed  Google Scholar 

  134. Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E, Redhu NS, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity. 2014;40:706–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Steen EH, Wang X, Balaji S, Butte MJ, Bollyky PL, Keswani SG. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv Wound Care (New Rochelle). 2020;9:184–98.

    Article  PubMed  Google Scholar 

  137. McArdle C, Abbah SA, Bhowmick S, Collin E, Pandit A. Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model. Biomater Sci. 2021;9:3136–49.

    Article  CAS  PubMed  Google Scholar 

  138. Vishwakarma A, Bhise NS, Evangelista MB, Rouwkema J, Dokmeci MR, Ghaemmaghami AM, et al. Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends Biotechnol. 2016;34:470–82.

    Article  CAS  PubMed  Google Scholar 

  139. Kajahn J, Franz S, Rueckert E, Forstreuter I, Hintze V, Moeller S, et al. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter. 2012;2:226–36.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Zarei F, Soleimaninejad M. Role of growth factors and biomaterials in wound healing. Artif Cells Nanomed Biotechnol. 2018;46:906–11.

    Article  CAS  PubMed  Google Scholar 

  141. Da Silva CA, Hartl D, Liu W, Lee CG, Elias JA. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol. 2008;181:4279–86.

    Article  PubMed  Google Scholar 

  142. Ueno H, Nakamura F, Murakami M, Okumura M, Kadosawa T, Fujinag T. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials. 2001;22:2125–30.

    Article  CAS  PubMed  Google Scholar 

  143. Xiong Y, Huang X, Jiao Y, Zhou C, Yu T. Synergistic effect of Mn-Si-COS on wound immune microenvironment by inhibiting excessive skin fibrosis mediated with ROS/TGF-β1/Smad7 signal. Biomater Adv. 2023;152: 213497.

    Article  CAS  PubMed  Google Scholar 

  144. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol. 2019;10:1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.

    Article  CAS  PubMed  Google Scholar 

  146. Madsen DH, Leonard D, Masedunskas A, Moyer A, Jürgensen HJ, Peters DE, et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol. 2013;202:951–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, et al. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. Sci Adv. 2020;6:eaay3704.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jeschke MG, Wood FM, Middelkoop E, Bayat A, Teot L, Ogawa R, et al. Scars Nat Rev Dis Primers. 2023;9:64.

    Article  PubMed  Google Scholar 

  149. Snyder RJ, Lantis J, Kirsner RS, Shah V, Molyneaux M, Carter MJ. Macrophages: A review of their role in wound healing and their therapeutic use. Wound Repair Regen. 2016;24:613–29.

    Article  PubMed  Google Scholar 

  150. Stawski L, Haines P, Fine A, Rudnicka L, Trojanowska M. MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One. 2014;9:e109763.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Sciences Foundation of China (No.82160378,81860340) and Chongqing traditional chinese medicine inheritance and innovation team project(2023090006KJZX2022WJW008).

Funding

National Natural Science Foundation of China, 82160378, Dewu Liu, 81860340, Dewu Liu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewu Liu.

Ethics declarations

Conflicts of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, D. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Tissue Eng Regen Med (2024). https://doi.org/10.1007/s13770-024-00669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13770-024-00669-7

Keywords

Navigation