Skip to main content

Graded-Three-Dimensional Cell-Encapsulating Hydrogel as a Potential Biologic Scaffold for Disc Tissue Engineering

Abstract

Background:

Intervertebral disk (IVD) degeneration, which can cause lower back pain, is a major predisposing factor for disability and can be managed through multiple approaches. However, there is no satisfactory strategy currently available to reconstruct and recover the natural properties of IVDs after degeneration. As tissue engineering develops, scaffolds with embedded cell cultures have proved critical for the successful regeneration of IVDs.

Methods:

In this study, an integrated scaffold for IVD replacement was developed. Through scanning electron microscopy and other mechanical measurements, we characterized the physical properties of different hydrogels. In addition, we simulated the physiological structure of natural IVDs. Nucleus pulposus (NP) cells and annulus fibrosus-derived stem cells (AFSCs) were seeded in gelatin methacrylate (GelMA) hydrogel at different concentrations to evaluate cell viability and matrix expression.

Results:

It was found that different concentrations of GelMA hydrogel can provide a suitable environment for cell survival. However, hydrogels with different mechanical properties influence cell adhesion and extracellular matrix component type I collagen, type II collagen, and aggrecan expression.

Conclusion:

This tissue-engineered IVD implant had a similar structure and function as the native IVD, with the inner area mimicking the NP tissue and the outer area mimicking the stratified annulus fibrosus tissue. The new integrated scaffold demonstrated a good simulation of disc structure. The preparation of efficient and regeneration-promoting tissue-engineered scaffolds is an important issue that needs to be explored in the future. It is hoped that this work will provide new ideas and methods for the further construction of functional tissue replacement discs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10:44–56.

    CAS  PubMed  Google Scholar 

  2. Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80:S46–54.

    PubMed  PubMed Central  Google Scholar 

  3. Yang S, Zhang F, Ma J, Ding W. Intervertebral disc ageing and degeneration: the antiapoptotic effect of oestrogen. Ageing Res Rev. 2020;57:100978.

    CAS  PubMed  Google Scholar 

  4. Hudson KD, Alimi M, Grunert P, Härtl R, Bonassar LJ. Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr Opin Biotechnol. 2013;24:872–9.

    CAS  PubMed  Google Scholar 

  5. Lazebnik M, Singh M, Glatt P, Friis LA, Berkland CJ, Detamore MS. Biomimetic method for combining the nucleus pulposus and annulus fibrosus for intervertebral disc tissue engineering. J Tissue Eng Regen Med. 2011;5:e179–87.

    CAS  PubMed  Google Scholar 

  6. Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat. 2002;201:159–71.

    PubMed  PubMed Central  Google Scholar 

  7. Zhu L, Yu C, Zhang X, Yu Z, Zhan F, Yu X, et al. The treatment of intervertebral disc degeneration using traditional Chinese medicine. J Ethnopharmacol. 2020;263:113117.

    CAS  PubMed  Google Scholar 

  8. Cazzanelli P, Wuertz-Kozak K. MicroRNAs in Intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology. Int J Mol Sci. 2020;21:3601.

    CAS  PubMed Central  Google Scholar 

  9. Chan WC, Sze KL, Samartzis D, Leung VY, Chan D. Structure and biology of the intervertebral disk in health and disease. Orthop Clin North Am. 2011;42:447–64.

    PubMed  Google Scholar 

  10. Huang B, Zhuang Y, Li CQ, Liu LT, Zhou Y. Regeneration of the intervertebral disc with nucleus pulposus cell-seeded collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer constructs in a rabbit disc degeneration model. Spine (Phila Pa 1976). 2011;36:2252–59.

  11. Xu P, Guan J, Chen Y, Xiao H, Yang T, Sun H, et al. Stiffness of photocrosslinkable gelatin hydrogel influences nucleus pulposus cell properties in vitro. J Cell Mol Med. 2021;25:880–91.

    CAS  PubMed  Google Scholar 

  12. Horner HA, Urban JP. 2001 Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976). 2001;26:2543–9.

  13. Ma CJ, Liu X, Che L, Liu ZH, Samartzis D, Wang HQ. Stem cell therapies for intervertebral disc degeneration: immune privilege reinforcement by Fas/FasL regulating machinery. Curr Stem Cell Res Ther. 2015;10:285–95.

    CAS  PubMed  Google Scholar 

  14. Mohammadian M, Abasi E, Akbarzadeh A. Mesenchymal stem cell-based gene therapy: a promising therapeutic strategy. Artif Cells Nanomed Biotechnol. 2016;44:1206–11.

    CAS  PubMed  Google Scholar 

  15. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312–9.

    CAS  PubMed  Google Scholar 

  16. Sharma P, Kumar P, Sharma R, Bhatt VD, Dhot PS. Tissue engineering; current status and futuristic scope. J Med Life. 2019;12:225–9.

    PubMed  PubMed Central  Google Scholar 

  17. Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, et al. An insight of nanomaterials in tissue engineering from fabrication to applications. Tissue Eng Regen Med. 2022. https://doi.org/10.1007/s13770-022-00459-z

  18. Silva-Correia J, Gloria A, Oliveira MB, Mano JF, Oliveira JM, Ambrosio L, et al. Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels. J Biomed Mater Res A. 2013;101:3438–46.

    PubMed  Google Scholar 

  19. Sun Z, Luo B, Liu Z, Huang L, Liu B, Ma T, et al. Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration. Biomaterials. 2016;82:34–47.

    CAS  PubMed  Google Scholar 

  20. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006;27:388–96.

    CAS  PubMed  Google Scholar 

  21. Collin EC, Grad S, Zeugolis DI, Vinatier CS, Clouet JR, Guicheux JJ, et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials. 2011;32:2862–70.

    CAS  PubMed  Google Scholar 

  22. Cruz MA, Hom WW, DiStefano TJ, Merrill R, Torre OM, Lin HA, et al. Cell-seeded adhesive biomaterial for repair of annulus fibrosus defects in intervertebral discs. Tissue Eng Part A. 2018;24:187–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/beta-catenin signaling for spinal cord injury repair. Biomaterials. 2018;183:114–27.

    CAS  PubMed  Google Scholar 

  24. Chen Z, Wu H, Wang H, Zaldivar-Silva D, Aguero L, Liu Y, et al. An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair. Mater Sci Eng C Mater Biol Appl. 2021;129:112422.

    CAS  PubMed  Google Scholar 

  25. Yu Y, Wang Y, Zhang W, Wang H, Li J, Pan L, et al. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomater. 2020;113:317–27.

    CAS  PubMed  Google Scholar 

  26. Zhao X, Li S, Du X, Li W, Wang Q, He D, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty. Bioact Mater. 2022;8:196–209.

    CAS  PubMed  Google Scholar 

  27. Yan Y, Cao Y, Cheng R, Shen Z, Zhao Y, Zhang Y, et al. Preparation and in vitro characterization of gelatin methacrylate for corneal tissue engineering. Tissue Eng Regen Med. 2022;19:59–72.

    CAS  PubMed  Google Scholar 

  28. Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22:2027–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou P, Xu P, Guan J, Zhang C, Chang J, Yang F, et al. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration. Colloids Surf B Biointerfaces. 2020;194:111214.

    CAS  PubMed  Google Scholar 

  30. Zhou J, Tian Z, Tian Q, Peng L, Li Q, Luo X, et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater. 2021;6:1711–26.

    CAS  Google Scholar 

  31. Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, et al. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials. 2021;266:120385.

    CAS  PubMed  Google Scholar 

  32. Hu H, Dong L, Bu Z, Shen Y, Luo J, Zhang H, et al. miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration. J Extracell Vesicles. 2020;9:1778883.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sultan MT, Choi BY, Ajiteru O, Hong DK, Lee SM, Kim HJ, et al. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials. 2021;266:120413.

    CAS  PubMed  Google Scholar 

  34. Ratheesh G, Vaquette C, Xiao Y. Patient-specific bone particles bioprinting for bone tissue engineering. Adv Healthc Mater. 2020. https://doi.org/10.1002/adhm.202001323

  35. Qiao Y, Liu X, Zhou X, Zhang H, Zhang W, Xiao W, et al. Gelatin templated polypeptide co-cross-linked hydrogel for bone regeneration. Adv Healthc Mater. 2020;9:e1901239.

    PubMed  Google Scholar 

  36. Monteiro MV, Gaspar VM, Ferreira LP, Mano JF. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci. 2020;8:1855–64.

    CAS  PubMed  Google Scholar 

  37. Yue X, Nguyen TD, Zellmer V, Zhang S, Zorlutuna P. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials. 2018;170:37–48.

    CAS  PubMed  Google Scholar 

  38. Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials. 2017;129:188–98.

    CAS  PubMed  Google Scholar 

  39. Liu T, Weng W, Zhang Y, Sun X, Yang H. Applications of gelatin methacryloyl (GelMA) hydrogels in microfluidic technique-assisted tissue engineering. Molecules. 2020;25:5305.

    CAS  PubMed Central  Google Scholar 

  40. Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10:17742–55.

    CAS  PubMed  Google Scholar 

  41. Chu G, Yuan Z, Zhu C, Zhou P, Wang H, Zhang W, et al. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomater. 2019;92:254–64.

    CAS  PubMed  Google Scholar 

  42. Li Y, Liu C, Liu W, Cheng X, Zhang A, Zhang S, et al. Apatite formation induced by chitosan/gelatin hydrogel coating anchored on poly(aryl ether nitrile ketone) substrates to promote osteoblastic differentiation. Macromol Biosci. 2021;21: e2100262.

    PubMed  Google Scholar 

  43. Nguyen AM, Johannessen W, Yoder JH, Wheaton AJ, Vresilovic EJ, Borthakur A, et al. Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. J Bone Joint Surg Am. 2008;90:796–802.

    PubMed  PubMed Central  Google Scholar 

  44. Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine (Phila Pa 1976). 2008;33:E166–73.

  45. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest. 1996;98:996–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Connell GD, Leach JK, Klineberg EO. Tissue engineering a biological repair strategy for lumbar disc herniation. Biores Open Access. 2015;4:431–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rizwan M, Chan SW, Comeau PA, Willett TL, Yim EKF. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Biomed Mater. 2020;15:065017.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Suo H, Zhang D, Yin J, Qian J, Wu ZL, Fu J. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;92:612–20.

    CAS  PubMed  Google Scholar 

  49. Wang Z, Tian Z, Menard F, Kim K. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication. 2017;9:044101.

    PubMed  Google Scholar 

  50. Cao D, Zhang Y, Cui Z, Du Y, Shi Z. New strategy for design and fabrication of polymer hydrogel with tunable porosity as artificial corneal skirt. Mater Sci Eng C Mater Biol Appl. 2017;70:665–72.

    CAS  PubMed  Google Scholar 

  51. Wu P, Wang L, Li W, Zhang Y, Wu Y, Zhi D, et al. Construction of vascular graft with circumferentially oriented microchannels for improving artery regeneration. Biomaterials. 2020;242: 119922.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang J, Yang X, Wang L, Zhang W, Yu W, Wang N, et al. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale. 2017;9:13095–103.

    CAS  PubMed  Google Scholar 

  53. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.

    CAS  PubMed  Google Scholar 

  54. Raeber GP, Lutolf MP, Hubbell JA. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J. 2005;89:1374–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Modulevsky DJ, Lefebvre C, Haase K, Al-Rekabi Z, Pelling AE. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS One. 2014;9:e97835.

    PubMed  PubMed Central  Google Scholar 

  56. Owen SC, Shoichet MS. Design of three-dimensional biomimetic scaffolds. J Biomed Mater Res A. 2010;94:1321–31.

    PubMed  Google Scholar 

  57. Willems P. Decision making in surgical treatment of chronic low back pain: the performance of prognostic tests to select patients for lumbar spinal fusion. Acta Orthop Suppl. 2013;84:1–35.

    PubMed  Google Scholar 

  58. Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater. 2022;8:267–95.

    CAS  PubMed  Google Scholar 

  59. Xu H, Sun M, Wang C, Xia K, Xiao S, Wang Y, et al. GDF5-GelMA injectable microspheres laden with adipose-derived stem cells for disc degeneration repair. Biofabrication. 2021;13: 015010.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Natural Science Foundation of Anhui Province (2008085QH362), 512 Talents Development Project of Bengbu Medical College (by51202302), and the Scientific Research Foundation of Bengbu Medical College (BYKY1884, BYKY2019039ZD, 2020byzd070 and 2021bypd006).

Author information

Authors and Affiliations

Authors

Contributions

YM (Doctor of Philosophy), TQ (Doctor of Medicine), and ZL (Master of Medicine) were involved in study design, literature research, data analysis, and writing the manuscript. YZ (Master of Medicine), YZ (Master of Medicine), ZL (Master of Medicine), ZZ (Master of Medicine) and XG (Master of Medicine) were involved in the study design and data analysis.

Corresponding authors

Correspondence to Yingji Mao or Taibao Qian.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

This study was approved by the ethics committee of the medical faculty of Bengbu Medical College (Approval Number No. 2019100).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, Y., Zhao, Y. et al. Graded-Three-Dimensional Cell-Encapsulating Hydrogel as a Potential Biologic Scaffold for Disc Tissue Engineering. Tissue Eng Regen Med 19, 1001–1012 (2022). https://doi.org/10.1007/s13770-022-00480-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00480-2

Keywords

  • Hydrogel
  • Gelatin methacrylate
  • Intervertebral disk replacement