Skip to main content

The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology

Abstract

Various tissues, including the heart, cornea, bone, esophagus, bladder and liver, have been vascularized using the cell sheet technique. It overcomes the limitations of existing techniques by allowing small layers of the cell sheet to generate capillaries on their own, and it can also be used to vascularize tissue-engineered transplants. Cell sheets eliminate the need for traditional tissue engineering procedures such as isolated cell injections and scaffold-based technologies, which have limited applicability. While cell sheet engineering can eliminate many of the drawbacks, there are still a few challenges that need to be addressed. The number of cell sheets that can be layered without triggering core ischemia or hypoxia is limited. Even when scaffold-based technologies are disregarded, strategies to tackle this problem remain a substantial impediment to the efficient regeneration of thick, living three-dimensional cell sheets. In this review, we summarize the cell sheet technology in myocardial infarcted tissue regeneration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Yurttas T, Hidvegi R, Filipovic M. Biomarker-based preoperative risk stratification for patients undergoing non-cardiac surgery. J Clin Med. 2020;9:351–60.

    PubMed Central  Article  Google Scholar 

  2. Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34:849–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Zhao MT, Ye S, Su J, Garg V. Cardiomyocyte proliferation and maturation: two sides of the same coin for heart regeneration. Front Cell Dev Biol. 2020;8:594226.

  4. Lafuse WP, Wozniak DJ, Rajaram MV. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10:51–78.

    PubMed Central  Article  CAS  Google Scholar 

  5. Teringova E, Tousek P. Apoptosis in ischemic heart disease. J Transl Med. 2017;15:87–94.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Graham E, Bergmann O. Dating the heart: exploring cardiomyocyte renewal in humans. Physiology (Bethesda). 2017;32:33–41.

    CAS  Google Scholar 

  7. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.

    CAS  PubMed  Article  Google Scholar 

  8. Kaptoge S, Pennells L, De Bacquer D, Cooney MT, Kavousi M, Stevens G, et al. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7:e1332–45.

    Article  Google Scholar 

  9. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442–62.

    PubMed  PubMed Central  Article  Google Scholar 

  10. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28:583–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–528.

    PubMed  Article  Google Scholar 

  12. Maltês S, Rocha M, Cunha GJ, Brízido C, Strong C, Tralhão A, et al. Challenges of organ shortage for heart transplant: surviving amidst the chaos of long waiting times. Transplantat Direct. 2021;7:e671–4.

    Article  Google Scholar 

  13. Saidi R, Kenari SH. Challenges of organ shortage for transplantation: solutions and opportunities. Int J Organ Transplant Med. 2014;5:87–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sadek H, Olson EN. Toward the goal of human heart regeneration. Cell Stem Cell. 2020;26:7–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Terashvili M, Bosnjak ZJ. Stem cell therapies in cardiovascular disease. J Cardiothorac Vasc Anesth. 2019;33:209–22.

    PubMed  Article  Google Scholar 

  17. Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, et al. Cardiac cell sheet transplantation improves damaged heart function via superior cell survival in comparison with dissociated cell injection. Tissue Eng Part A. 2011;17:2973–80.

    CAS  PubMed  Article  Google Scholar 

  18. Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells. 2008;1:1–7.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15:353–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Li Q, Li M, Li M, Zhang Z, Ma H, Zhao L, et al. Adipose-derived mesenchymal stem cell seeded Atelocollagen scaffolds for cardiac tissue engineering. J Mater Sci Mater Med. 2020;31:83–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Nam SY, Park SH. ECM based bioink for tissue mimetic 3D bioprinting. Adv Exp Med Biol. 2018;1064:335–53.

    CAS  PubMed  Article  Google Scholar 

  22. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33:1782–90.

    CAS  PubMed  Article  Google Scholar 

  23. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach J, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90:223–30.

    CAS  PubMed  Article  Google Scholar 

  24. Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003;24:2309–16.

    CAS  PubMed  Article  Google Scholar 

  25. Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, et al. Cell-seeded biomaterial scaffolds: the urgent need for unanswered accelerated angiogenesis. Int J Nanomedicine. 2022;17:1035–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Park KM, Shin YM, Kim K, Shin H. Tissue engineering and regenerative medicine 2017: a year in review. Tissue Eng Part B Rev. 2018;24:327–44.

    PubMed  Article  Google Scholar 

  27. Kobayashi J, Okano T. Design of temperature-responsive polymer-grafted surfaces for cell sheet preparation and manipulation. Bull Chem Soc Jpn. 2019;92:817–24.

    CAS  Article  Google Scholar 

  28. Elloumi-Hannachi I, Yamato M, Okano T. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med. 2010;267:54–70.

    CAS  PubMed  Article  Google Scholar 

  29. Kim K, Bou-Ghannam S, Okano T. Cell sheet tissue engineering for scaffold-free three-dimensional (3D) tissue reconstruction. Methods Cell Biol. 2020:143–167.

  30. Menasché P, Hagège AA, Vilquin J-T, Desnos M, Abergel E, Pouzet B, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078–83.

    PubMed  Article  Google Scholar 

  31. Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.

    PubMed  Article  Google Scholar 

  32. Durrani S, Konoplyannikov M, Ashraf M, Haider KH. Skeletal myoblasts for cardiac repair. Regen Med. 2010;5:919–32.

    PubMed  Article  Google Scholar 

  33. Fukushima S, Coppen SR, Lee J, Yamahara K, Felkin LE, Terracciano CM, et al. Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS One. 2008;3:e3071–82.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Gavira JJ, Nasarre E, Abizanda G, Perez-Ilzarbe M, De Martino Rodriguez A, García de Jalón JA, et al. Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur Heart J. 2010;31:1013–21.

    PubMed  Article  Google Scholar 

  35. Léobon B, Garcin I, Menasché P, Vilquin J-T, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci. 2003;100:7808–11.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Li J, Levin MD, Xiong Y, Petrenko N, Patel VV, Radice GL. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44:597–606.

    CAS  PubMed  Article  Google Scholar 

  37. Wang L, Serpooshan V, Zhang J. Engineering human cardiac muscle patch constructs for prevention of post-infarction LV remodeling. Front Cardiovas Med. 2021;8:111–9.

    Google Scholar 

  38. Shudo Y, Miyagawa S, Nakatani S, Fukushima S, Sakaguchi T, Saito A, et al. Myocardial layer-specific effect of myoblast cell-sheet implantation evaluated by tissue strain imaging. Circ J. 2013;77:1063–72.

    CAS  PubMed  Article  Google Scholar 

  39. Ott HC, Kroess R, Bonaros N, Marksteiner R, Margreiter E, Schachner T, et al. Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. Eur J Cardiothorac Surg. 2005;27:1017–21.

    PubMed  Article  Google Scholar 

  40. Yoon DM, Curtiss S, Reddi AH, Fisher JP. Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo. Tissue Eng Part A. 2009;15:3449–59.

    CAS  PubMed  Article  Google Scholar 

  41. Terajima Y, Shimizu T, Tsuruyama S, Sekine H, Ishii H, Yamazaki K, et al. Autologous skeletal myoblast sheet therapy for porcine myocardial infarction without increasing risk of arrhythmia. Cell Med. 2014;6:99–109.

    PubMed  Article  Google Scholar 

  42. Memon IA, Sawa Y, Fukushima N, Matsumiya G, Miyagawa S, Taketani S, et al. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg. 2005;130:1333–41.

    PubMed  Article  Google Scholar 

  43. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, et al. Human cardiac stem cells. Proc Acad Sci. 2007;104:14068–73.

    CAS  Article  Google Scholar 

  44. Zakrzewski JL, Van Den Brink MR, Hubbell JA. Overcoming immunological barriers in regenerative medicine. Nat Biotechnol. 2014;32:786–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Nardi NB, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. In: Wobus AM, Boheler KR. editors. Stem cells. Handbook of experimental Pharmacology, vol 174. Springer, Berlin, Heidelberg. 2008. p. 249–82.

  46. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697–705.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Nakao M, Inanaga D, Nagase K, Kanazawa H. Characteristic differences of cell sheets composed of mesenchymal stem cells with different tissue origins. Regen Ther. 2019;11:34–40.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, characteristics, and therapeutic applications of mesenchymal cells in tissue engineering. Tissue Eng Regen Med. 2022;19:325–61.

  49. Van Nguyen TT, Vu NB, Van Pham P. Mesenchymal stem cell transplantation for ischemic diseases: mechanisms and challenges. Tissue Eng Regen Med. 2021;18:587–611.

    PubMed  PubMed Central  Article  Google Scholar 

  50. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbau GS, Rodriguez JE, Valdes D, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci. 2009;106:14022–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J. 2009;30:2722–32.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Wollert KC, Meyer GP, Lotz J, Lichtenberg SR, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    PubMed  Article  Google Scholar 

  54. Kocher A, Schuster M, Szabolcs M, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6.

    CAS  PubMed  Article  Google Scholar 

  55. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45–6.

    PubMed  Article  Google Scholar 

  56. Du M, Schmull S, Zhang W, Wang C, Lian F, Chen Y, et al. c-kit+ AT2R+ bone marrow mononuclear cell subset is a superior subset for cardiac protection after myocardial infarction. Stem Cells Int. 2016;2016:4913515–30.

    PubMed  PubMed Central  Google Scholar 

  57. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.

    PubMed  Article  Google Scholar 

  58. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Forfang K, et al. Autologous stem cell transplantation in acute myocardial infarction: The ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J. 2005;39:150–8.

    CAS  PubMed  Article  Google Scholar 

  59. Dill T, Schächinger V, Rolf A, Möllmann S, Thiele H, Tillmanns H, et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J. 2009;157:541–7.

    PubMed  Article  Google Scholar 

  60. Assmus B, Rolf A, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, et al. Clinical outcome 2 years after intracoronary administration of bone marrow–derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3:89–96.

    PubMed  Article  Google Scholar 

  61. Mathur A, Fernández-Avilés F, Bartunek J, Belmans A, Crea F, Dowlut S, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J. 2020;41:3702–10.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Assmus B, Walter DH, Seeger FH, Leistner DM, Steiner J, Ziegler I, et al. Effect of shock wave–facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. JAMA. 2013;309:1622–31.

    CAS  PubMed  Article  Google Scholar 

  63. Quyyumi AA, Vasquez A, Kereiakes DJ, Klapholz M, Schaer GL, Abdel-Latif A, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120:324–31.

    CAS  PubMed  Article  Google Scholar 

  64. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Parouchev A, et al. Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. 2018;71:429–38.

    PubMed  Article  Google Scholar 

  65. Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, et al. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci. 2014;29:23–31.

    PubMed  Article  Google Scholar 

  66. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Lancet T. Retraction—Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2019;393:1084.

    Article  Google Scholar 

  68. Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE Trial. Am Heart J. 2014;168: e2.

    Google Scholar 

  69. Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, de Jong R, van Geuns RJ, et al. First experience in humans using adipose tissue–derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:539–40.

    PubMed  Article  Google Scholar 

  70. Hare JM, Fishman JE, Gerstenblith G, Velazquez DLD, Zambrano JP, Suncion VY, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Mathur A, Arnold R, Assmus B, Bartunek J, Belmans A, Bönig H, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: rationale and design of the BAMI trial. Eur J Heart Fail. 2017;19:1545–50.

    CAS  PubMed  Article  Google Scholar 

  73. Chang D, Shimizu T, Haraguchi Y, Gao S, Sakaguchi K, Umezu M, et al. Time course of cell sheet adhesion to porcine heart tissue after transplantation. PLoS One. 2015;10:e0137494–508.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Kawamura M, Miyagawa S, Fukushima S, Saito A, Toda K, Daimon T, et al. Xenotransplantation of bone marrow-derived human mesenchymal stem cell sheets attenuates left ventricular remodeling in a porcine ischemic cardiomyopathy model. Tissue Eng Part A. 2015;21:2272–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Tanaka Y, Shirasawa B, Takeuchi Y, Kawamura D, Nakamura T, Samura M, et al. Autologous preconditioned mesenchymal stem cell sheets improve left ventricular function in a rabbit old myocardial infarction model. Am J Transl Res. 2016;8:2222–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tano N, Narita T, Kaneko M, Ikebe C, Coppen SR, Campbell NG, et al. Epicardial placement of mesenchymal stromal cell-sheets for the treatment of ischemic cardiomyopathy; in vivo proof-of-concept study. Mol Ther. 2014;22:1864–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Watt S, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2012; 2:CD006536.pub3.

  78. Hauskeller C, Baur N. Travelling cells: harmonized European regulation and the BAMI stem cell trial. In: Phuc VP, Achim R, editors. Safety, ethics and regulations. Champa: Springer; 2017. p. 201–16.

    Chapter  Google Scholar 

  79. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23:412–23.

    CAS  PubMed  Article  Google Scholar 

  80. Nakagami H, Morishit R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006;13:77–81.

    PubMed  Article  Google Scholar 

  81. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.

    PubMed  Article  Google Scholar 

  82. Yang D, Wang W, Li L, Peng Y, Chen P, Huang H, et al. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One. 2013;8:e59020–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31:489–501.

    CAS  PubMed  Article  Google Scholar 

  84. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12:459–65.

    CAS  PubMed  Article  Google Scholar 

  85. Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, Le Coz O, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29:812–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6:195–202.

    PubMed  PubMed Central  Article  Google Scholar 

  87. Guo R, Wan F, Morimatsu M, Xu Q, Feng T, Yang H, et al. Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material. Bioactive Mater. 2021;6:2999–3012.

    CAS  Article  Google Scholar 

  88. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Sci. 1998;282:1145–7.

    CAS  Article  Google Scholar 

  89. Zandstra P, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 2003;9:767–78.

    CAS  PubMed  Article  Google Scholar 

  90. Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M, et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng. 2005;92:920–33.

    CAS  PubMed  Article  Google Scholar 

  91. Zhu W-Z, Hauch KD, Xu C, Laflamme MA. Human embryonic stem cells and cardiac repair. Transplant Rev. 2009;23:53–68.

    CAS  Article  Google Scholar 

  92. Tohyama S, Fujita J, Fujita C, Yamaguchi M, Kanaami S, Ohno R, et al. Efficient large-scale 2D culture system for human induced pluripotent stem cells and differentiated cardiomyocytes. Stem Cell Reports. 2017;9:1406–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Park M, Yoon YS. Cardiac regeneration with human pluripotent stem cell-derived cardiomyocytes. Korean Circ J. 2018;48:974–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, et al. Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells. 2012;30:1196–205.

    CAS  PubMed  Article  Google Scholar 

  95. Stevens KR, Pabon L, Muskheli V, Murry CE. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A. 2009;15:1211–22.

    CAS  PubMed  Article  Google Scholar 

  96. Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest. 2010;120:1125–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Moyzis AG, Sadoshima J, Gustafsson ÅB. Mending a broken heart: the role of mitophagy in cardioprotection. Am J Physiol Heart Circ Physiol. 2015;308:H183–92.

    CAS  PubMed  Article  Google Scholar 

  98. Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N, et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg. 2006;132:918–24.

    PubMed  Article  Google Scholar 

  99. Pawani H, Bhartiya D. Pluripotent stem cells for cardiac regeneration: overview of recent advances & emerging trends. Indian J Med Res. 2013;137:270–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115–30.

    CAS  PubMed  Article  Google Scholar 

  101. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsuura K, Haraguchi Y, Shimizu T, Okano T. Cell sheet transplantation for heart tissue repair. J Controlled Release. 2013;169:336–40.

    CAS  Article  Google Scholar 

  103. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    CAS  PubMed  Article  Google Scholar 

  104. Krencik R, Weick JP, Liu Y, Zhang Z-J, Zhang S-C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011;29:528–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Yoshida S, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ohashi F, et al. Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol Ther. 2018;26:2681–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110:962–8.

    PubMed  PubMed Central  Article  Google Scholar 

  107. Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Ito E, et al. Enhanced survival of transplanted human induced pluripotent stem cell–derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation. 2013;128:S87–94.

    PubMed  Article  Google Scholar 

  108. De Pieri A, Rochev Y, Zeugolis DI. Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med. 2021;6:1–15.

    Article  Google Scholar 

  109. Sekiya N, Matsumiya G, Miyagawa S, Saito A, Shimizu T, Okano T, et al. Layered implantation of myoblast sheets attenuates adverse cardiac remodeling of the infarcted heart. J Thorac Cardiovasc Surg. 2009;138:985–93.

    PubMed  Article  Google Scholar 

  110. Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Yamauchi T, Imanishi Y, et al. Impaired myocardium regeneration with skeletal cell sheets—a preclinical trial for tissue-engineered regeneration therapy. Transplantation. 2010;90:364–72.

    PubMed  Article  Google Scholar 

  111. Shudo Y, Miyagawa S, Fukushima S, Saito A, Shimizu T, Okano T, et al. Novel regenerative therapy using cell-sheet covered with omentum flap delivers a huge number of cells in a porcine myocardial infarction model. J Thorac Cardiovasc Surg. 2011;142:1188–96.

    PubMed  Article  Google Scholar 

  112. Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials. 2005;26:6415–22.

    CAS  PubMed  Article  Google Scholar 

  113. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012;126:S29–37.

    CAS  PubMed  Article  Google Scholar 

  114. Fabian T, Federico JA, Ponn RB. Fibrin glue in pulmonary resection: a prospective, randomized, blinded study. Ann Thorac Surg. 2003;75:1587–92.

    PubMed  Article  Google Scholar 

  115. Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, et al. Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg. 2008;34:864–9.

    PubMed  Article  Google Scholar 

  116. Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A, et al. Phase I clinical trial of autologous stem cell–sheet transplantation therapy for treating cardiomyopathy. Am Heart J. 2017;6:e003918–29.

    Article  Google Scholar 

  117. Kim JH, Joo HJ, Kim M, Choi SC, Lee JI, Hong SJ, et al. Transplantation of adipose-derived stem cell sheet attenuates adverse cardiac remodeling in acute myocardial infarction. Tissue Eng Part A. 2017;23:1–11.

    PubMed  Article  CAS  Google Scholar 

  118. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    CAS  PubMed  Article  Google Scholar 

  119. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj. 2014;1840:2506–19.

    CAS  Article  Google Scholar 

  120. Araña M, Gavira JJ, Peña E, González A, Abizanda G, Cilla M, et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials. 2014;35:143–51.

    PubMed  Article  CAS  Google Scholar 

  121. Matsuura K, Honda A, Nagai T, Fukushima N, Iwanaga K, Tokunaga M, et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest. 2009;119:2204–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103:389–98.

    CAS  PubMed  Article  Google Scholar 

  123. Khademhosseini A, Ferreira L, Blumling J III, Yeh J, Karp JM, Fukuda J, et al. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials. 2006;27:5968–77.

    CAS  PubMed  Article  Google Scholar 

  124. Wobus AM, Kaomei G, Shan J, Wellner M-C, Rohwedel J, Guanju J, et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol. 1997;29:1525–39.

    CAS  PubMed  Article  Google Scholar 

  125. Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912–6.

    CAS  PubMed  Article  Google Scholar 

  126. Siltanen A, Kitabayashi K, Pätilä T, Ono M, Tikkanen I, Sawa Y, et al. Bcl-2 improves myoblast sheet therapy in rat chronic heart failure. Tissue Eng Part A. 2011;17:115–25.

    CAS  PubMed  Article  Google Scholar 

  127. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, et al. Bcl‐2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells. 2007;25:2118–27.

  128. Siltanen A, Kitabayashi K, Lakkisto P, Mäkelä J, Pätilä T, Ono M, et al. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure. PLoS One. 2011;6:e19161–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Uchinaka A, Tasaka K, Mizuno Y, Maeno Y, Ban T, Mori S, et al. Laminin α 2-secreting fibroblasts enhance the therapeutic effect of skeletal myoblast sheets. Eur J Cardiothorac Surg. 2017;51:457–64.

    PubMed  Google Scholar 

  130. Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, et al. C-kit cardiac progenitor cell based cell sheet improves vascularization and attenuates cardiac remodeling following myocardial infarction in rats. BioMed Res Int. 2018;2018:3536854–67.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep. 2014;4:6716.

    Google Scholar 

  132. Haque N, Kasim NHA, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci. 2015;11:324–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Roberts EG, Kleptsyn VF, Roberts GD, Mossburg KJ, Feng B, Domian IJ, et al. Development of a bio-MEMS device for electrical and mechanical conditioning and characterization of cell sheets for myocardial repair. Biotechnol Bioeng. 2019;116:3098–111.

    CAS  PubMed  Article  Google Scholar 

  134. Endoh M. Force–frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Eur J Pharmacol. 2004;500:73–86.

    CAS  PubMed  Article  Google Scholar 

  135. Godier-Furnémont AF, Tiburcy M, Wagner E, Dewenter M, Lämmle S, El-Armouche A, et al. Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials. 2015;60:82–91.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. Tsuruyama S, Matsuura K, Sakaguchi K, Shimizu T. Pulsatile tubular cardiac tissues fabricated by wrapping human iPS cells-derived cardiomyocyte sheets. Regen Ther. 2019;11:297–305.

    PubMed  PubMed Central  Article  Google Scholar 

  137. Homma J, Shimizu S, Sekine H, Matsuura K, Shimizu T. A novel method to align cells in a cardiac tissue-like construct fabricated by cell sheet-based tissue engineering. J Tissue Eng Regen Med. 2020;14:944–54.

    CAS  PubMed  Article  Google Scholar 

  138. Kim H, Witt H, Oswald TA, Tarantola M. Adhesion of epithelial cells to pnipam treated surfaces for temperature-controlled cell-sheet harvesting. ACS Appl Mater. 2020;12:33516–29.

    CAS  Article  Google Scholar 

  139. Yamato M, Konno C, Kushida A, Hirose M, Utsumi M, Kikuchi A, et al. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials. 2000;21:981–6.

    CAS  PubMed  Article  Google Scholar 

  140. Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol Rapid Commun. 1990;11:571–6.

    CAS  Article  Google Scholar 

  141. Tekin H, Sanchez JG, Tsinman T, Langer R, Khademhosseini A. Thermoresponsive platforms for tissue engineering and regenerative medicine. AIChE J. 2011;57:3249–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Shimizu T, Yamato M, Kikuchi A, Okano T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 2001;7:141–51.

    CAS  PubMed  Article  Google Scholar 

  143. Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res. 2002;60:110–7.

    CAS  PubMed  Article  Google Scholar 

  144. Wang CC, Chen CH, Lin WW, Hwang SM, Hsieh PC, Lai PH, et al. Direct intramyocardial injection of mesenchymal stem cell sheet fragments improves cardiac functions after infarction. Cardiovasc Res. 2008;77:515–24.

    CAS  PubMed  Article  Google Scholar 

  145. Zhang L, Guo J, Zhang P, Xiong Q, Wu SC, Xia L, et al. Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast. Circ Heart Fail. 2015;8:156–66.

    CAS  PubMed  Article  Google Scholar 

  146. Yeo WS, Hodneland CD, Mrksich M. Electroactive monolayer substrates that selectively release adherent cells. Chembiochem. 2001;2:590–3.

    CAS  Article  Google Scholar 

  147. Kobayashi Y, Cordonier CE, Noda Y, Nagase F, Enomoto J, Kageyama T, et al. Tailored cell sheet engineering using microstereolithography and electrochemical cell transfer. Sci Rep. 2019;9:1–8.

    Article  CAS  Google Scholar 

  148. Na J, Heo JS, Han M, Lim H, Ki HO, Kim E. Harvesting of living cell sheets by the dynamic generation of diffractive photothermal pattern on PEDOT. Adv Funct Mater. 2017;27:1604260–8.

    Article  CAS  Google Scholar 

  149. Edahiro JI, Sumaru K, Tada Y, Ohi K, Takagi T, Kameda M, et al. In situ control of cell adhesion using photoresponsive culture surface. Biomacromol. 2005;6:970–4.

    CAS  Article  Google Scholar 

  150. Koo M-A, Lee MH, Kwon B-J, Seon GM, Kim MS, Kim DH, et al. Exogenous ROS-induced cell sheet transfer based on hematoporphyrin-polyketone film via a one-step process. Biomaterials. 2018;161:47–56.

    CAS  PubMed  Article  Google Scholar 

  151. Kang B, Shin J, Park HJ, Rhyou C, Kang D, Lee SJ, et al. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat Commun. 2018;9:5402.

    Article  CAS  Google Scholar 

  152. Kurashina Y, Imashiro C, Hirano M, Kuribara T, Totani K, Ohnuma K, et al. Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves. Commun Biol. 2019;2:1–11.

    CAS  Article  Google Scholar 

  153. Nakao M, Imashiro C, Kuribara T, Kurashina Y, Totani K, Takemura K. Formation of large scaffold-free 3-D aggregates in a cell culture dish by ultrasound standing wave trapping. Ultrasound Med Biol. 2019;45:1306–15.

    PubMed  Article  Google Scholar 

  154. Gaetani R, Feyen DA, Verhage V, Slaats R, Messina E, Christman KL, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339–48.

    CAS  PubMed  Article  Google Scholar 

  155. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    CAS  PubMed  Article  Google Scholar 

  156. De las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. ChSRv. 2005;34:276–85.

    Google Scholar 

  157. Kyriakides TR, Cheung CY, Murthy N, Bornstein P, Stayton PS, Hoffman AS. pH-sensitive polymers that enhance intracellular drug delivery in vivo. J Control Release. 2002;78:295–303.

    CAS  PubMed  Article  Google Scholar 

  158. Guillaume-Gentil O, Semenov OV, Zisch AH, Zimmermann R, Vörös J, Ehrbar M. pH-controlled recovery of placenta-derived mesenchymal stem cell sheets. Biomaterials. 2011;32:4376–84.

    CAS  PubMed  Article  Google Scholar 

  159. Ishii M, Shibata R, Shimizu Y, Yamamoto T, Kondo K, Inoue Y, et al. Multilayered adipose-derived regenerative cell sheets created by a novel magnetite tissue engineering method for myocardial infarction. Int J Cardiol. 2014;175:545–53.

    PubMed  Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Research Foundation Grant (NRF- 2019M3E5D1A02070861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyug Park.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Munderere, R., Kim, SH., Kim, C. et al. The Progress of Stem Cell Therapy in Myocardial-Infarcted Heart Regeneration: Cell Sheet Technology. Tissue Eng Regen Med (2022). https://doi.org/10.1007/s13770-022-00467-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13770-022-00467-z

Keywords

  • Myocardial infarction
  • Stem cells
  • Cell sheet
  • Regenerative medicine