Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol. 2005;175:7512–8.
CAS
Article
Google Scholar
Williams DL, Epperson RT, Ashton NN, Taylor NB, Kawaguchi B, Olsen RE, et al. In vivo analysis of a first-in-class tri-alkyl norspermidine-biaryl antibiotic in an active release coating to reduce the risk of implant-related infection. Acta Biomater. 2019;93:36–49.
CAS
Article
Google Scholar
Shiels SM, Bouchard M, Wang H, Wenke JC. Chlorhexidine-releasing implant coating on intramedullary nail reduces infection in a rat model. Eur Cell Mater. 2018;35:178–94.
CAS
Article
Google Scholar
Hegde V, Park HY, Dworsky E, Zoller SD, Xi W, Johansen DO, et al. The use of a novel antimicrobial implant coating in vivo to prevent spinal implant infection. Spine (Phila Pa 1976). 2020;45:E305–11.
Ghosh C, Sarkar P, Issa R, Haldar J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019;27:323–38.
CAS
Article
Google Scholar
Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25:730–3.
CAS
Article
Google Scholar
Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics (Basel). 2019;8:138.
Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol. 2002;41:453–8.
Cheng W, Zhang Z, Xu R, Cai P, Kristensen P, Chen M, et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J Biomed Mater Res B Appl Biomater. 2018;106:2588–95.
CAS
Article
Google Scholar
Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 2019;20:e47427.
Zhou N, Li Y, Loveland CH, Wilson MJ, Cao B, Qiu P, et al. Hierarchical ordered assembly of genetically modifiable viruses into nanoridge-in-microridge structures. Adv Mater. 2019;31:e1905577.
Chung WJ, Merzlyak A, Yoo SY, Lee SW. Genetically engineered liquid-crystalline viral films for directing neural cell growth. Langmuir. 2010;26:9885–90.
CAS
Article
Google Scholar
Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules. 2019;9:470.
CAS
Article
Google Scholar
Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. Plos One. 2017;12:e0179245.
Article
Google Scholar
Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol. 2016;7:1391.
Koskella B. Bacteria-phage interactions across time and space: Merging local adaptation and time-shift experiments to understand phage evolution. Am Nat. 2014;184:S9–21.
Article
Google Scholar
Shen HY, Liu ZH, Hong JS, Wu MS, Shiue SJ, Lin HY. Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release. 2021;331:154–63.
Jamal M, Hussain T, Rajanna Das C, Andleeb S. Isolation and characterization of a myoviridae MJ1 bacteriophage against multi-drug resistant Escherichia coli 3. Jundishapur J Microbiol. 2015;8:e25917.
Article
Google Scholar
Cheung DT, Nimni ME. Mechanism of crosslinking of proteins by glutaraldehyde I: reaction with model compounds. Connect Tissue Res. 1982;10:187–99.
CAS
Article
Google Scholar
Ertürk G, Lood R. Bacteriophages as biorecognition elements in capacitive biosensors: Phage and host bacteria detection. Sensor Actuators B Chem. 2018;258:535–43.
Article
Google Scholar
Janczuk-Richter M, Marinović I, Niedziółka-Jönsson J, Szot-Karpińska K. Recent applications of bacteriophage-based electrodes: A mini-review. Electrochem Commun. 2019;99:11–5.
Lin HY, Chen SH, Chang SH, Huang ST. Tri-layered chitosan scaffold as a potential skin substitute. J Biomater Sci Polym Ed. 2015;26:855–67.
Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci. 2009;16:108.
Article
Google Scholar
Menzies KL, Jones L. The impact of contact angle on the biocompatibility of biomaterials. Optom Vision Sci. 2010;87:387–99.
Article
Google Scholar
Wiegand C, Zieger M, Rode C, Schroter K, Krahmer A, Wyrwa R, et al. JIS L 1902 and ISO 22196 for determination of antifungal properties of textiles and ceramic surfaces. Mycoses. 2011;54:416–7.
Google Scholar
Mottaghitalab F, Farokhi M, Mottaghitalab V, Ziabari M, Divsalar A, Shokrgozar MA. Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydr Polym. 2011;86:526–35.
Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomedicine. 2012;7:25–34.
CAS
PubMed
PubMed Central
Google Scholar
King AM, Lefkowitz E, Adams MJ, Carstens EB. Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Amsterdam: Elsvier; 2011.
Bibi Z, Abbas Z, Rehman SU. The phage P.E1 isolated from hospital sewage reduces the growth of Escherichia coli. Biocontrol Sci Technol. 2016;26:181–8.
Article
Google Scholar
Abedon ST. Lysis of lysis-inhibited bacteriophage T4-infected cells. J Bacteriol. 1992;174:8073–80.
CAS
Article
Google Scholar
Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLoS One. 2017;12:e0179245.
Article
Google Scholar
Kim SG, Jun JW, Giri SS, Yun S, Kim HJ, Kim SW, et al. Isolation and characterisation of pVa-21, a giant bacteriophage with anti-biofilm potential against Vibrio alginolyticus. Sci Rep. 2019;9:6284.
Melo LDR, Ferreira R, Costa AR, Oliveira H, Azeredo J. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep. 2019;9:6643.
Article
Google Scholar
Roberts GAF, Taylor KE, Gels C. The formation of gels by reaction of chitosan with glutaraldehyde. Makromol Chem. 1989;190:951–60.
CAS
Article
Google Scholar
Budianto E, Muthoharoh SP, Nizardo NM. Effect of crosslinking agents, pH and temperature on swelling behavior of cross-linked chitosan hydrogel. Asian J Appl Sci. 2015;3:581–8.
Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW. Oriented immobilization of bacteriophages for biosensor applications. Appl Environ Microbiol. 2010;76:528–35.
CAS
Article
Google Scholar
Bennett AR, Davids FG, Vlahodimou S, Banks JG, Betts RP. The use of bacteriophage-based systems for the separation and concentration of Salmonella. J Appl Microbiol. 1997;83:259–65.
CAS
Article
Google Scholar
Bumgardner JD, Wiser R, Elder SH, Jouett R, Yang Y, Ong JL. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J Biomater Sci Polym Ed. 2003;14:1401–9.
Wang X, Zhang Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 2020;371:55–63.
CAS
Article
Google Scholar
Khan S, Newaz G. A comprehensive review of surface modification for neural cell adhesion and patterning. J Biomed Mater Res A. 2010;93:1209–24.
Article
Google Scholar
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.
CAS
Article
Google Scholar
Khan SP, Auner GG, Newaz GM. Influence of nanoscale surface roughness on neural cell attachment on silicon. Nanomedicine. 2005;1:125–9.
CAS
Article
Google Scholar