Skip to main content

An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications

Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.

This is a preview of subscription content, access via your institution.

Fig. 1

(Reconstructed from [Khademhosseini A, Langer RA. decade of progress in tissue engineering. Nat Protoc. 2016;11:1775–81])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Reconstructed from [Park JS, Park K, Moon HT, Woo DG, Yang HN, Park K-H. Electrical pulsed stimulation of surfaces homogeneously coated with gold nanoparticles to induce neurite outgrowth of PC12 cells. Langmuir. 2009;25:451–7]

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Reconstructed from [Miao Y, Shi X, Li Q, Hao L, Liu L, Liu X, et al. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Bio-mater Sci. 2019;7:4046–59]

Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Reconstructed from [Kim B-C, Bae H, Kwon I-K, Lee E-J, Park J-H, Khademhosseini A, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18:235–44]

Fig. 25
Fig. 26
Fig. 27
Fig. 28

(Reconstructed from [Khademhosseini A, Langer RA. decade of progress in tissue engineering. Nat Protoc. 2016;11:1775–81])

References

  1. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637.

    CAS  Article  Google Scholar 

  2. Paul A, Manoharan V, Krafft D, Assmann A, Uquillas JA, Shin SR, et al. Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B. 2016;4:3544–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Hasan A, Paul A, Memic A, Khademhosseini AA. multilayered microfluidic blood vessel-like structure. Biomed Microdev. 2015;17:1–13.

    CAS  Article  Google Scholar 

  4. Zhang J, Chen H, Zhao M, Liu G, Wu J. 2D nanomaterials for tissue engineering application. Nano Res. 2020;13:2019–34.

    CAS  Article  Google Scholar 

  5. Zheng X, Zhang P, Fu Z, Meng S, Dai L, Yang H. Applications of nanomaterials in tissue engineering. RSC Adv. 2021;11:19041–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Khademhosseini A, Langer RA. decade of progress in tissue engineering. Nat Protoc. 2016;11:1775–81.

    CAS  PubMed  Article  Google Scholar 

  7. Opris I, Lebedev MA, Pulgar VM, Vidu R, Enachescu M, Casanova MF. Nanotechnologies in neuroscience and neuroengineering. Front Neurosci. 2020;14:33.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Tu Z, Guday G, Adeli M. and Haag R Multivalent interactions between 2D nanomaterials and biointerfaces. Adv Mater. 2018;30:1706709.

    Article  CAS  Google Scholar 

  9. Huang K, Wu J, Gu Z. Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Appl Mater Interfaces. 2018;11:2908–16.

    Article  CAS  Google Scholar 

  10. Wang S, Shao J, Li Z, Ren Q, Yu XF, Liu S. Black phosphorus-based multimodal nanoagent: Showing targeted combinatory therapeutics against cancer metastasis. Nano Lett. 2019;19:5587–94.

    CAS  PubMed  Article  Google Scholar 

  11. Luo M, Fan T, Zhou Y, Zhang H, Mei L. 2D black phosphorus–based biomedical applications. Adv Funct Mater. 2019;29:1808306.

    Article  CAS  Google Scholar 

  12. Liu Z, Chen H, Jia Y, Zhang W, Zhao H, Fan W, et al. A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale. 2018;10:18795–804.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Kurapati R, Kostarelos K, Prato M, Bianco A. Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv Mater. 2016;28:6052–74.

    CAS  PubMed  Article  Google Scholar 

  14. Mohan T, Dobaj Štiglic A, Beaumont M, Konnerth J, Gürer F, Makuc D, et al. Generic method for designing self-standing and dual porous 3D bioscaffolds from cellulosic nanomaterials for tissue engineering applications. ACS Appl Bio Mater. 2020;3:1197–209.

    CAS  PubMed  Article  Google Scholar 

  15. Mohan T, Maver T, Štiglic AD, Stana-Kleinschek K, Kargl R. 3D bioprinting of polysaccharides and their derivatives: from characterization to application. In: Fundamental biomaterials: polymers. Elsevier; 2018. p. 105–41.

    Chapter  Google Scholar 

  16. Asadi N, Del Bakhshayesh AR, Davaran S, Akbarzadeh A. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater Chem Phys. 2020;242:122528.

    CAS  Article  Google Scholar 

  17. Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M. Biomaterials for regenerative medicine: historical perspectives and current trends. In: Cell biology and translational medicine, vol. 4. Springer; 2018. p. 1–19.

    Google Scholar 

  18. Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol. 2018;46:691–705.

    CAS  PubMed  Article  Google Scholar 

  19. Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU. Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int Mater Rev. 2019;64:91–126.

    CAS  Article  Google Scholar 

  20. Min JH, Patel M, Koh WG. Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers. 2018;10:1078.

    PubMed Central  Article  CAS  Google Scholar 

  21. Souier T, Stefancich M, Chiesa M. Characterization of multi-walled carbon nanotube–polymer nanocomposites by scanning spreading resistance microscopy. Nanotechnology. 2012;23:405704.

    PubMed  Article  CAS  Google Scholar 

  22. Patton AJ, Poole-Warren LA, Green RA. Mechanisms for imparting conductivity to nonconductive polymeric biomaterials. Macromol Biosci. 2016;16:1103–21.

    CAS  PubMed  Article  Google Scholar 

  23. Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111:441–53.

    CAS  PubMed  Article  Google Scholar 

  24. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5:37553–67.

    CAS  Article  Google Scholar 

  25. Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett. 2014;14:5792–6.

    CAS  PubMed  Article  Google Scholar 

  26. Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromol. 2018;19:1764–82.

    CAS  Article  Google Scholar 

  27. Powar PV. Development status in the meadow of nanostructure magnetic drug delivery system and its promising applications. Int J Pharm Pharm Sci. 2017;9:10–7.

    CAS  Article  Google Scholar 

  28. Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering–a review. J Mater Chem B. 2020;8:607–28.

    CAS  PubMed  Article  Google Scholar 

  29. Menon MP, Selvakumar R, Ramakrishna S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv. 2017;7:42750–73.

    Article  Google Scholar 

  30. Apelgren P, Karabulut E, Amoroso M, Mantas A, Hc MÁ, Kölby L, et al. In vivo human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink. ACS Biomater Sci Eng. 2019;5:2482–90.

    CAS  PubMed  Article  Google Scholar 

  31. Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7:658.

    Article  CAS  Google Scholar 

  32. Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, Gavanji S. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym. 2014;108:232–8.

    CAS  PubMed  Article  Google Scholar 

  33. Zhang J, Chang P, Zhang C, Xiong G, Luo H, Zhu Y, et al. Immobilization of lecithin on bacterial cellulose nanofibers for improved biological functions. React Funct Polym. 2015;91:100–7.

    Article  CAS  Google Scholar 

  34. Maver T, Smrke D, Kurečič M, Gradišnik L, Maver U, Kleinschek KS. Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. J Solgel Sci Technol. 2018;88:33–48.

    CAS  Article  Google Scholar 

  35. Petta D, Armiento A, Grijpma D, Alini M, Eglin D, D’Este M. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication. 2018;10:044104.

    CAS  PubMed  Article  Google Scholar 

  36. Sampath UG, Ching YC, Chuah CH, Sabariah JJ, Lin PC. Fabrication of porous materials from natural/synthetic biopolymers and their composites. Mater. 2016;9:991.

    Article  CAS  Google Scholar 

  37. Cidonio G, Glinka M, Dawson J, Oreffo R. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials. 2019;209:10–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Wang X, Lou T, Zhao W, Song G, Li C, Cui G. The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. J Biomater Appl. 2016;30:1545–51.

    CAS  PubMed  Article  Google Scholar 

  39. Saravanan S, Sareen N, Abu-El-Rub E, Ashour H, Sequiera GL, Ammar HI, et al. Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci Rep. 2018;8:15069.

    CAS  Article  Google Scholar 

  40. Kaur T, Thirugnanam A. Tailoring in vitro biological and mechanical properties of polyvinyl alcohol reinforced with threshold carbon nanotube concentration for improved cellular response. RSC Adv. 2016;6:39982–92.

    CAS  Article  Google Scholar 

  41. Wang H, Han H, Ma Z. Conductive hydrogel composed of 1, 3, 5-benzenetricarboxylic acid and Fe3+ used as enhanced electrochemical immunosensing substrate for tumor biomarker. Bioelectrochemistry. 2017;114:48–53.

    CAS  PubMed  Article  Google Scholar 

  42. Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B. 2014;2:1584–93.

    CAS  PubMed  Article  Google Scholar 

  43. Chahal S, Hussain FSJ, Yusoff MBM. Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering. Procedia Eng. 2013;53:683–8.

    CAS  Article  Google Scholar 

  44. Nazari H, Heirani-Tabasi A, Hajiabbas M, Khalili M, Shahsavari Alavijeh M, Hatamie S, et al. Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering. Polym Adv Technol. 2020;31:248–59.

    CAS  Article  Google Scholar 

  45. Liang Y, Mitriashkin A, Lim TT, Goh JC. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials. 2021;276:121008.

    CAS  PubMed  Article  Google Scholar 

  46. Honkamäki L, Joki T, Grigoryev NA, Levon K, Ylä-Outinen L, Narkilahti S. Novel method to produce a layered 3D scaffold for human pluripotent stem cell-derived neuronal cells. J Neurosci Methods. 2021;350:109043.

    PubMed  Article  CAS  Google Scholar 

  47. Mahmoudi N, Simchi A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: in vitro and in vivo effects of graphene oxide. Mater Sci Eng C Mater Biol Appl. 2017;70:121–31.

    CAS  Article  Google Scholar 

  48. Unnithan AR, Sasikala ARK, Park CH, Kim CSA. unique scaffold for bone tissue engineering: an osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J Ind Eng Chem. 2017;46:182–91.

    Article  CAS  Google Scholar 

  49. Rodrigues BV, Silva AS, Melo GF, Vasconscellos LM, Marciano FR, Lobo AO. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. Mater Sci Eng C Mater Biol Appl. 2016;59:782–91.

    CAS  Article  Google Scholar 

  50. Lee EJ, Lee JH, Shin YC, Hwang DG, Kim JS, Jin OS, et al. Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater Res. 2014;18:18–24.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Yang J, Wang X, Wang X, Jia R, Huang J. Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J Phys Chem Solids. 2010;71:448–52.

    CAS  Article  Google Scholar 

  52. Kim YS, Cho K, Lee HJ, Chang S, Lee H, Kim JH, et al. Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold. React Funct Polym. 2016;109:15–22.

    CAS  Article  Google Scholar 

  53. Luo X, Cui XT. Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochem Commun. 2009;11:1956–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Shi Z, Gao H, Feng J, Ding B, Cao X, Kuga S, et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem Int Ed. 2014;53:5380–4.

    CAS  Article  Google Scholar 

  55. Darabi MA, Khosrozadeh A, Mbeleck R, Liu Y, Chang Q, Jiang J, et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater. 2017;29:1700533.

    Article  CAS  Google Scholar 

  56. Rakhshaei R, Namazi H, Hamishehkar H, Kafil HS, Salehi R. In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J Appl Polym Sci. 2019;136:47590.

    Article  CAS  Google Scholar 

  57. Lei Z, Zhou Y, Wu P. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare “smart” nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small. 2016;12:3112–8.

    CAS  PubMed  Article  Google Scholar 

  58. Gupta ND, Maity S, Chattopadhyay KK. Field emission enhancement of polypyrrole due to band bending induced tunnelling in polypyrrole-carbon nanotubes nanocomposite. J Ind Eng Chem. 2014;20:3208–13.

    CAS  Article  Google Scholar 

  59. Li H, Zhao Q, Li B, Kang J, Yu Z, Li Y, et al. Fabrication and properties of carbon nanotube-reinforced hydroxyapatite composites by a double in situ synthesis process. Carbon. 2016;101:159–67.

    CAS  Article  Google Scholar 

  60. Li Z, Wang H, Yang B, Sun Y, Huo R. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater Sci Eng C Mater Biol Appl. 2015;57:181–8.

    CAS  Article  Google Scholar 

  61. Liang Y, Zhao X, Hu T, Chen B, Yin Z, Ma PX, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small. 2019;15:1900046.

    Article  CAS  Google Scholar 

  62. Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8:8050–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Chu J, Shi P, Yan W, Fu J, Yang Z, He C, et al. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale. 2018;10:9547–60.

    CAS  PubMed  Article  Google Scholar 

  64. Deliormanlı AM. Direct write assembly of graphene/poly (ε-caprolactone) composite scaffolds and evaluation of their biological performance using mouse bone marrow mesenchymal stem cells. Appl Biochem Biotechnol. 2019;188:1117–33.

    PubMed  Article  CAS  Google Scholar 

  65. Jing X, Mi HY, Napiwocki BN, Peng XF, Turng LS. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon. 2017;125:557–70.

    CAS  Article  Google Scholar 

  66. Liu N, Chen J, Zhuang J, Zhu P. Fabrication of engineered nanoparticles on biological macromolecular (PEGylated chitosan) composite for bio-active hydrogel system in cardiac repair applications. Int J Biol Macromol. 2018;117:553–8.

    CAS  PubMed  Article  Google Scholar 

  67. Choe G, Kim SW, Park J, Park J, Kim S, Kim YS, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513.

    CAS  PubMed  Article  Google Scholar 

  68. Xu C, Wu F, Yu P, Mao L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sens. 2019;4:3102–18.

    CAS  PubMed  Article  Google Scholar 

  69. Kim Y, Meade SM, Chen K, Feng H, Rayyan J, Hess-Dunning A, et al. Nano-architectural approaches for improved intracortical interface technologies. Front Neurosci. 2018;12:456.

    PubMed  PubMed Central  Article  Google Scholar 

  70. Samadian H, Ehterami A, Sarrafzadeh A, Khastar H, Nikbakht M, Rezaei A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: in vitro and in vivo study. Int J Biol Macromol. 2020;150:380–8.

    CAS  PubMed  Article  Google Scholar 

  71. Schulte C, Lamanna J, Moro AS, Piazzoni C, Borghi F, Chighizola M, et al. Neuronal cells confinement by micropatterned cluster-assembled dots with mechanotransductive nanotopography. ACS Biomater Sci Eng. 2018;4:4062–75.

    CAS  PubMed  Article  Google Scholar 

  72. Ryynänen T, Toivanen M, Salminen T, Ylä-Outinen L, Narkilahti S, Lekkala J. Ion beam assisted E-beam deposited TiN microelectrodes—applied to neuronal cell culture medium evaluation. Front Neurosci. 2018;12:882.

    PubMed  PubMed Central  Article  Google Scholar 

  73. Satir TM, Nazir FH, Vizlin-Hodzic D, Hardselius E, Blennow K, Wray S, et al. Accelerated neuronal and synaptic maturation by BrainPhys medium increases Aβ secretion and alters Aβ peptide ratios from iPSC-derived cortical neurons. Sci Rep. 2020;10:601.

    Article  CAS  Google Scholar 

  74. Shih M, Kuo CT, Lin MH, Chuang YJ, Chen H, Yew TR. 3D-CNT micro-electrode array for zebrafish ECG study including directionality measurement and drug test. Biocybern Biomed Eng. 2020;40:701–8.

    Article  Google Scholar 

  75. Pelkonen A, Mzezewa R, Sukki L, Ryynänen T, Kreutzer J, Hyvärinen T, et al. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Biosens Bioelectron. 2020;168:112553.

    CAS  PubMed  Article  Google Scholar 

  76. Kumar R, Aadil KR, Ranjan S, Kumar VB. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol. 2020;57:101617.

    CAS  Article  Google Scholar 

  77. Jin G-Z, Kim M, Shin US, Kim HW. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett. 2011;501:10–4.

    CAS  PubMed  Article  Google Scholar 

  78. Miao Y, Shi X, Li Q, Hao L, Liu L, Liu X, et al. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater Sci. 2019;7:4046–59.

    CAS  PubMed  Article  Google Scholar 

  79. Liu X, Miller AL, Park S, George MN, Waletzki BE, Xu H, et al. Two-dimensional black phosphorus and graphene oxide nanosheets synergistically enhance cell proliferation and osteogenesis on 3D printed scaffolds. ACS Appl Mater Interfaces. 2019;11:23558–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Ghaderinejad P, Najmoddin N, Bagher Z, Saeed M, Karimi S, Simorgh S, et al. An injectable anisotropic alginate hydrogel containing oriented fibers for nerve tissue engineering. Chem Eng J. 2021;420:130465.

    CAS  Article  Google Scholar 

  81. Diez-Pascual AM, Diez-Vicente AL. Poly (propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl Mater Interfaces. 2016;8:17902–14.

    CAS  PubMed  Article  Google Scholar 

  82. Zhao Y, Chen J, Zou L, Xu G, Geng Y. Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem Eng J. 2019;378:122174.

    CAS  Article  Google Scholar 

  83. Pahlevanzadeh F, Bakhsheshi-Rad H, Hamzah E. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. J Mech Behav Biomed Mater. 2018;82:257–67.

    CAS  PubMed  Article  Google Scholar 

  84. Miyaji H, Murakami S, Nishida E, Akasaka T, Fugetsu B, Umeda J, et al. Evaluation of tissue behavior on three-dimensional collagen scaffold coated with carbon nanotubes and β-tricalcium phosphate nanoparticles. J Tissue Eng. 2018;15:123–30.

    Google Scholar 

  85. Chen WY, Yang RC, Wang HM, Zhang L, Hu K, Li CH, et al. Self-assembled heterojunction carbon nanotubes synergizing with photoimmobilized IGF-1 inhibit cellular senescence. Adv Healthc Mater. 2016;5:2413–26.

    CAS  PubMed  Article  Google Scholar 

  86. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47.

    CAS  PubMed  Article  Google Scholar 

  87. Bohner M, Loosli Y, Baroud G, Lacroix D. Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater. 2011;7:478–84.

    CAS  PubMed  Article  Google Scholar 

  88. Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2018;15:155–62.

    CAS  PubMed  Article  Google Scholar 

  89. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromol. 2015;16:1489–96.

    CAS  Article  Google Scholar 

  90. Huan S, Ajdary R, Bai L, Klar V, Rojas OJ. Low solids emulsion gels based on nanocellulose for 3D-printing. Biomacromol. 2018;20:635–44.

    Article  CAS  Google Scholar 

  91. Tchobanian A, Van Oosterwyck H, Fardim P. Polysaccharides for tissue engineering: current landscape and future prospects. Carbohydr Polym. 2019;205:601–25.

    CAS  PubMed  Article  Google Scholar 

  92. Xue J, Wu T, Dai Y, Xia YJ. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119:5298–415.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Ardekani SR, Aghdam ASR, Nazari M, Bayat A, Yazdani E, Saievar-Iranizad E, et al. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. J Anal Appl Pyrolysis. 2019;141:104631.

    Article  CAS  Google Scholar 

  94. Fu H, Xu H, Liu Y, Yang Z, Kormakov S, Wu D, et al. Overview of injection molding technology for processing polymers and their composites. ES Mater Manuf. 2020;8:3–23.

    CAS  Google Scholar 

  95. Deb P, Deoghare AB, Borah A, Barua E, Lala SD. Scaffold development using biomaterials: a review. Mater Today. 2018;5:12909–19.

    CAS  Google Scholar 

  96. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater. 2020;113:1–22.

  97. Sinha SK. Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing. In: 3D and 4D printing of polymer nanocomposite materials. Elsevier; 2020. p. 119–60.

    Chapter  Google Scholar 

  98. Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol. 2019;7:164.

    PubMed  PubMed Central  Article  Google Scholar 

  99. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34.

    CAS  PubMed  Article  Google Scholar 

  100. Lai J, Zhang L, Niu W, Qi W, Zhao J, Liu Z, et al. One-pot synthesis of gold nanorods using binary surfactant systems with improved monodispersity, dimensional tunability and plasmon resonance scattering properties. Nanotechnology. 2014;25:125601.

    PubMed  Article  CAS  Google Scholar 

  101. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci. 2012;57:660–723.

    CAS  Article  Google Scholar 

  102. Kurniawan D, Nor F, Lee H, Lim J. Elastic properties of polycaprolactone at small strains are significantly affected by strain rate and temperature. Proc Inst Mech Eng H. 2011;225:1015–20.

    CAS  Article  Google Scholar 

  103. Ashtari K, Nazari H, Ko H, Tebon P, Akhshik M, Akbari M, et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv Drug Deliv Rev. 2019;144:162–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 2015;525:479–85.

  105. Serpooshan V, Chen P, Wu H, Lee S, Sharma A, Hu DA, et al. Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials. 2017;131:47–57.

  106. Gálvez-Montón C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Cardiac tissue engineering and the bioartificial heart. Revista Española de Cardiología (English Edition). 2013;66:391–9.

  107. Tomov ML, Gil CJ, Cetnar A, Theus AS, Lima BJ, Nish JE, et al. Engineering functional cardiac tissues for regenerative medicine applications. Curr Cardiol Rep. 2019;21:105.

    Article  Google Scholar 

  108. Lee J, Manoharan V, Cheung L, Lee S, Cha B-H, Newman P, et al. Nanoparticle-based hybrid scaffolds for deciphering the role of multimodal cues in cardiac tissue engineering. ACS Nano. 2019;13:12525–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Choi YJ, Yi HG, Kim SW, Cho DW. 3D cell printed tissue analogues: a new platform for theranostics. Theranostics. 2017;7:3118–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  Google Scholar 

  111. Nishimura Y, Natsume A, Ito M, Hara M, Motomura K, Fukuyama R, et al. Interferon-β delivery via human neural stem cell abates glial scar formation in spinal cord injury. Cell Transplant. 2013;22:2187–201.

    PubMed  Article  Google Scholar 

  112. Chawla M, Kumar R, Siril PF. High catalytic activities of palladium nanowires synthesized using liquid crystal templating approach. J Mol Catal A Chem. 2016;423:126–34.

    CAS  Article  Google Scholar 

  113. Dutt S, Kumar R, Siril PF. Green synthesis of a palladium–polyaniline nanocomposite for green Suzuki-Miyaura coupling reactions. RSC Adv. 2015;5:33786–91.

    CAS  Article  Google Scholar 

  114. George J, Hsu CC, Nguyen LTB, Ye H, Cui Z. Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv. 2020;42:107370.

    CAS  PubMed  Article  Google Scholar 

  115. Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology. 2014;39:169–88.

  116. Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. J Tissue Eng Regen Med. 2016;10:E419–32.

  117. Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, Rose JC, Haraszti T, De Laporte L. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells. Small. 2017;13:1702207.

  118. Chedly J, Soares S, Montembault A, Von Boxberg Y, Veron-Ravaille M, Mouffle C, et al. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials. 2017;138:91–107.

  119. Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, et al. Bioengineered functional brain-like cortical tissue. Proc Natl Acad Sci. Sci U S A. 2014;111:13811-6.

  120. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 2017;35:659–66.

  121. d’Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci. 2018;12:976.

    PubMed  PubMed Central  Article  Google Scholar 

  122. Park JS, Park K, Moon HT, Woo DG, Yang HN, Park KH. Electrical pulsed stimulation of surfaces homogeneously coated with gold nanoparticles to induce neurite outgrowth of PC12 cells. Langmuir. 2009;25:451–7.

    CAS  PubMed  Article  Google Scholar 

  123. Yi DK, Nanda SS, Kim K, Selvan ST. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B. 2017;5:9429–51.

    CAS  PubMed  Article  Google Scholar 

  124. Pinkernelle J, Keilhoff G. Growth factor choice is critical for successful functionalization of nanoparticles. Front Neurosci. 2015;9:305.

    PubMed  PubMed Central  Article  Google Scholar 

  125. Convertino D, Luin S, Marchetti L, Coletti C. Peripheral neuron survival and outgrowth on graphene. Front Neurosci. 2018;12:1.

    PubMed  PubMed Central  Article  Google Scholar 

  126. Hossain I, Tan C, Doughty PT, Dutta G, Murray TA, Siddiqui S, et al. A novel microbiosensor microarray for continuous ex vivo monitoring of gamma-aminobutyric acid in real-time. Front Neurosci. 2018;12:500.

    PubMed  PubMed Central  Article  Google Scholar 

  127. Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal Methods. 2019;11:2738–55.

    PubMed  PubMed Central  Article  Google Scholar 

  128. Qiu B, Bessler N, Figler K, Buchholz MB, Rios AC, Malda J, et al. Bioprinting neural systems to model central nervous system diseases. Adv Funct Mater. 2020;30:1910250.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater. 2010;5:062001.

    PubMed  Article  CAS  Google Scholar 

  130. Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 2017;9:035003.

    PubMed  Article  CAS  Google Scholar 

  131. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029.

    Article  CAS  Google Scholar 

  132. Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi SM, Mokhtarzadeh A, et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;107:110267.

    CAS  Article  Google Scholar 

  133. Yi H, Rehman FU, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4:16050.

    Article  CAS  Google Scholar 

  134. Shalumon K, Lai GJ, Chen CH, Chen JP. Modulation of bone-specific tissue regeneration by incorporating bone morphogenetic protein and controlling the shell thickness of silk fibroin/chitosan/nanohydroxyapatite core–shell nanofibrous membranes. ACS Appl Mater Interfaces. 2015;7:21170–81.

  135. Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 2016;32:309–23.

  136. Nazir MA. Prevalence of periodontal disease. Int J Health Sci. 2017;11:72.

    Google Scholar 

  137. Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth formation: are the hardest tissues of human body hard to regenerate? Int J Mol Sci. 2020;21:4031.

    CAS  PubMed Central  Article  Google Scholar 

  138. Hakki SS, Bozkurt SB, Türkay E, Dard M, Purali N, Götz W. Recombinant amelogenin regulates the bioactivity of mouse cementoblasts in vitro. Int J Oral Sci. 2018;10:1–10.

    CAS  Article  Google Scholar 

  139. Tonk CH, Witzler M, Schulze M, Tobiasch E. Mesenchymal stem cells. In: Essential current concepts in stem cell biology. Springer; 2020. p. 21–39.

    Chapter  Google Scholar 

  140. Ottensmeyer PF, Witzler M, Schulze M. and Tobiasch E Small molecules enhance scaffold-based bone grafts via purinergic receptor signaling in stem cells. Int J Mol Sci. 2018;19:3601.

    PubMed Central  Article  CAS  Google Scholar 

  141. El Khaldi-Hansen B, El-Sayed F, Schipper D, Tobiasch E, Witzleben S, Schulze M. Functionalized 3D scaffolds for template-mediated biomineralization in bone regeneration. In: Rahman A, editor. Frontiers in stem cell and regenerative medicine research. Bentham Science; 2017. p. 130–78.

  142. Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18:235–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. Xi Y, Wang Y, Gao J, Xiao Y, Du J. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano. 2019;13:13645–57.

    CAS  PubMed  Article  Google Scholar 

  144. Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano. 2018;12:8882–92.

    CAS  PubMed  Article  Google Scholar 

  145. Zhang L, Wang Y, Wang C, He M, Wan J, Wei Y, et al. Light-activable on-demand release of nano-antibiotic platforms for precise synergy of thermochemotherapy on periodontitis. ACS Appl Mater Interfaces. 2019;12:3354–62.

    Article  CAS  Google Scholar 

  146. Zare EN, Lakouraj MM, Mohseni M. Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met. 2014;187:9–16.

    Article  CAS  Google Scholar 

  147. Zhao X, Li P, Guo B, Ma PX. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236–48.

    CAS  PubMed  Article  Google Scholar 

  148. Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev. 2018;129:148–68.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgement

The author SK and Bhawna thanks for Senior Research Fellowship from Council of Scientific & Industrial Research (File No. 08/694(0004)/2018-EMR-I) and University Grant Commission, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akanksha Gupta, Prashant Singh or Vinod Kumar.

Ethics declarations

Conflict of interest

Prashant Singh, Vinod Kumar and Akanksha Gupta (the Corresponding Authors) declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us. The authors also declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human participants and/or animals

It is declared that no human participants and/or animals are used in this work. It is a review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Kumar, S., Bhawna et al. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med (2022). https://doi.org/10.1007/s13770-022-00459-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13770-022-00459-z

Keywords

  • Tissue engineering
  • Nanomaterials
  • Nanotechnology
  • Regenerative medicine
  • Biomimetics
  • Conductive hydrogels
  • Polymers
  • Scaffolds