Skip to main content
Log in

Distinctive Roles of Wnt Signaling in Chondrogenic Differentiation of BMSCs under Coupling of Pressure and Platelet-Rich Fibrin

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Although newly formed constructs of feasible pressure-preadjusted bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) showed biomechanical flexibility and superior capacity for cartilage regeneration, it is still not very clear how BMSCs and seed cells feel mechanical stimuli and convert them into biological signals, and the difference in signal transduction underlying mechanical and chemical cues is also unclear.

Methods:

To determine whether mechanical stimulation (hydrostatic pressure) and chemical cues (platelet-rich fibrin, PRF) activate canonical or noncanonical Wnt signaling in BMSCs, BMSCs cocultured with PRF were subjected to hydrostatic pressure loading, and the activation of the Wnt signaling molecules and expression of cartilage-associated proteins and genes were determined by western blotting and polymerase chain reaction (PCR). Inhibitors of canonical or noncanonical Wnt signaling, XVX-939 or L690,330, were adopted to investigate the role of Wnt signaling molecules in mechanically promoted chondrogenic differentiation of BMSCs.

Results:

Hydrostatic pressure of 120 kPa activated both Wnt/β-catenin signaling and Wnt/Ca2+ signaling, with the the maximum promotion effect at 60 min. PRF exerted no synergistic effect on Wnt/β-catenin signaling activation. However, the growth factors released by PRF might reverse the promotion effects of pressure on Wnt/Ca2+ signaling. Real-time PCR and Western blotting results showed that pressure could activate the expression of Col-II, Sox9, and aggrecan in BMSCs cocultured with PRF. Blocking experiment found a positive role of Wnt/β-catenin signaling, and a negative role of Wnt/Ca2+ signaling in chondrogenic differentiation of the BMSCs. Mutual inhibition exists between canonical and noncanonical Wnt signaling in BMSCs under pressure.

Conclusion:

Wnt signaling participates in the pressure-promoted chondrogenesis of the BMSCs co-cultured with PRF, with canonical and noncanonical pathways playing distinct roles during the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76:579–92.

    Article  CAS  PubMed  Google Scholar 

  2. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014;20:596–608.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schipani R, Scheurer S, Florentin R, Critchley SE, Kelly DJ. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication. 2020;12:035011.

    Article  CAS  PubMed  Google Scholar 

  4. Petri M, Ufer K, Toma I, Becher C, Liodakis E, Brand S, et al. Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc. 2012;20:223–31.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng B, Tu T, Shi X, Liu Y, Zhao Y, Zhao Y, et al. A novel construct with biomechanical flexibility for articular cartilage regeneration. Stem Cell Res Ther. 2019;10:298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cecerska-Heryć E, Goszka M, Serwin N, Roszak M, Grygorcewicz B, Heryć R, et al. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev. 2022;64:84–94.

    Article  PubMed  CAS  Google Scholar 

  7. Parsons MJ, Tammela T, Dow LE. WNT as a driver and dependency in cancer. Cancer Discov. 2021;11:2413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev. 2020;60:101063.

    Article  CAS  PubMed  Google Scholar 

  9. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharm. 2021;133:110946.

    Article  CAS  Google Scholar 

  11. Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, et al. Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16:121–36.

    Article  CAS  PubMed  Google Scholar 

  12. Brunt L, Scholpp S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci. 2018;75:785–95.

    Article  CAS  PubMed  Google Scholar 

  13. Yang C, Wang C, Zhou J, Liang Q, He F, Li F, et al. Fibronectin 1 activates WNT/beta-catenin signaling to induce osteogenic differentiation via integrin beta1 interaction. Lab Invest. 2020;100:1494–502.

    Article  CAS  PubMed  Google Scholar 

  14. Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight. 2018;3:e96308.

    Article  PubMed Central  Google Scholar 

  15. Xuan F, Yano F, Mori D, Chijimatsu R, Maenohara Y, Nakamoto H, et al. Wnt/beta-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther. 2019;21:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Praxenthaler H, Krämer E, Weisser M, Hecht N, Fischer J, Grossner T, et al. Extracellular matrix content and WNT/beta-catenin levels of cartilage determine the chondrocyte response to compressive load. Biochim Biophys Acta Mol Basis Dis. 2018;1864:851–9.

    Article  CAS  PubMed  Google Scholar 

  17. Thorup AS, Strachan D, Caxaria S, Poulet B, Thomas BL, Eldridge SE, et al. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med. 2020;12:eaax3063.

    Article  CAS  PubMed  Google Scholar 

  18. L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47–56.

    CAS  PubMed  Google Scholar 

  19. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351:1187–96.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao YH, Zhang M, Liu NX, Lv X, Zhang J, Chen FM, et al. The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation. Biomaterials. 2013;34:5506–20.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep. 2019;9:12642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Steinmetz NJ, Bryant SJ. The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Acta Biomater. 2011;7:3829–40.

    Article  CAS  PubMed  Google Scholar 

  23. Iwamoto M, Ohta Y, Larmour C, Enomoto-Iwamoto M. Toward regeneration of articular cartilage. Birth Defects Res C Embryo Today. 2013;99:192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15:43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338:917–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silva Couto P, Rotondi MC, Bersenev A, Hewitt CJ, Nienow AW, Verter F, et al. Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnol Adv. 2020;45:107636.

    Article  CAS  PubMed  Google Scholar 

  27. DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 2011;12:308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kefauver JM, Ward AB, Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels. Nature. 2020;587:567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei F, Xu X, Zhang C, Liao Y, Ji B, Wang N. Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells. Nat Commun. 2020;11:4902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamashiro Y, Thang BQ, Ramirez K, Shin SJ, Kohata T, Ohata S, et al. Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci U S A. 2020;117:9896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004;131:1663–77.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang YY, Wen J, Gong C, Lin S, Zhang CX, Chen S, et al. BIO alleviated compressive mechanical force-mediated mandibular cartilage pathological changes through Wnt/beta-catenin signaling activation. J Orthop Res. 2018;36:1228–37.

    Article  CAS  PubMed  Google Scholar 

  33. Xu HG, Zheng Q, Song JX, Li J, Wang H, Liu P, et al. Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/beta-catenin complex cross-talk. Osteoarthritis Cartilage. 2016;24:158–68.

    Article  PubMed  Google Scholar 

  34. Ohashi K, Fujiwara S, Mizuno K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem. 2017;161:245–54.

    CAS  PubMed  Google Scholar 

  35. Du SJ, Purcell SM, Christian JL, McGrew LL, Moon RT. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol. 1995;15:2625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development. 1993;119:97–111.

    Article  CAS  PubMed  Google Scholar 

  37. Aznar N, Ear J, Dunkel Y, Sun N, Satterfield K, He F, et al. Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Sci Signal. 2018;11:eaao4220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Azimian-Zavareh V, Dehghani-Ghobadi Z, Ebrahimi M, Mirzazadeh K, Nazarenko I, Hossein G. Wnt5A modulates integrin expression in a receptor-dependent manner in ovarian cancer cells. Sci Rep. 2021;11:5885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slusarski DC, Corces VG, Moon RT. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature. 1997;390:410–3.

    Article  CAS  PubMed  Google Scholar 

  40. Jafri MS, Keizer J. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J. 1995;69:2139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang M, Chen YJ, Ono T, Wang JJ. Crosstalk between integrin and G protein pathways involved in mechanotransduction in mandibular condylar chondrocytes under pressure. Arch Biochem Biophys. 2008;474:102–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000;16:279–83.

    Article  PubMed  Google Scholar 

  43. Kühl M, Sheldahl LC, Malbon CC, Moon RT. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem. 2000;275:12701–11.

    Article  PubMed  Google Scholar 

  44. Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 2018;62:50–60.

    Article  CAS  PubMed  Google Scholar 

  45. Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in application of mechanical stimuli in bioreactors for cartilage tissue engineering. Tissue Eng Part B Rev. 2017;23:399–411.

    Article  CAS  PubMed  Google Scholar 

  46. Jia H, Ma X, Tong W, Doyran B, Sun Z, Wang L, et al. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Proc Natl Acad Sci U S A. 2016;113:14360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boonanantanasarn K, Lee HL, Baek K, Woo KM, Ryoo HM, Baek JH, et al. EGF Inhibits Wnt/beta-catenin-induced osteoblast differentiation by promoting beta-catenin degradation. J Cell Biochem. 2015;116:2849–57.

    Article  CAS  PubMed  Google Scholar 

  48. Schlupf J, Steinbeisser H. IGF antagonizes the Wnt/beta-catenin pathway and promotes differentiation of extra-embryonic endoderm. Differentiation. 2014.

  49. El Sabeh M, Saha SK, Afrin S, Islam MS, Borahay MA. Wnt/beta-catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Mol Cell Biochem. 2021;476:3513–36.

    Article  PubMed  CAS  Google Scholar 

  50. Luo K. Signaling cross talk between TGF-beta/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 2017;9:a022137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Patel KD, Nguyen DX. Condensing and constraining WNT by TGF-beta. Nat Cell Biol. 2021;23:213–14.

    Article  PubMed  CAS  Google Scholar 

  52. Dzialo E, Tkacz K, Blyszczuk P. Crosstalk between the TGF-beta and WNT signalling pathways during cardiac fibrogenesis. Acta Biochim Pol. 2018;65:341–9.

    Article  CAS  PubMed  Google Scholar 

  53. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.

    Article  CAS  PubMed  Google Scholar 

  54. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Zhao Z, Liu J, Huang N, Long D, Wang J, et al. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway. Cell Prolif. 2010;43:333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guang LG, Boskey AL, Zhu W. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro. Int J Biochem Cell Biol. 2012;44:1825–33.

    Article  CAS  PubMed  Google Scholar 

  57. Zheng W, Ding B, Li X, Liu D, Yokota H, Zhang P. Knee loading repairs osteoporotic osteoarthritis by relieving abnormal remodeling of subchondral bone via Wnt/beta-catenin signaling. FASEB J. 2020;34:3399–412.

    Article  CAS  PubMed  Google Scholar 

  58. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280:33132–40.

    Article  CAS  PubMed  Google Scholar 

  59. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5:a008334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, et al. Surrogate Wnt agonists that phenocopy canonical Wnt and beta-catenin signalling. Nature. 2017;545:234–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Golovchenko S, Hattori T, Hartmann C, Gebhardt M, Gebhard S, Hess A, et al. Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone. 2013;55:102–12.

    Article  CAS  PubMed  Google Scholar 

  62. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 2004;18:1072–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dao DY, Jonason JH, Zhang Y, Hsu W, Chen D, Hilton MJ, et al. Cartilage-specific beta-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res. 2012;27:1680–94.

    Article  CAS  PubMed  Google Scholar 

  64. Yang Y, Topol L, Lee H, Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development. 2003.

  65. Wang Y, Fan X, Xing L, Tian F. Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun Signal. 2019;17:97.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol. 2003;23:131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baksh D, Boland GM, Tuan RS. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem. 2007;101:1109–24.

    Article  CAS  PubMed  Google Scholar 

  68. Baksh D, Tuan RS. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. J Cell Physiol. 2007;212:817–26.

    Article  CAS  PubMed  Google Scholar 

  69. Gajos-Michniewicz A, Czyz M. WNT signaling in melanoma. Int J Mol Sci. 2020;21:4852.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (31971248) and the Shaanxi Science and Technology Innovation Team Project (2021TD-46). National Natural Science Foundation of China, 31971248, Min Zhang, Shaanxi Science and Technology Innovation Team Project, 2021TD-46, Min Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

All animal procedures performed in this study were reviewed and approved by the Animal Experimental Ethical Inspection of Fourth Military Medical University (No. 12023) and were performed in accordance with the guidelines of the International Association for the Study of Pain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Feng, F., Shi, F. et al. Distinctive Roles of Wnt Signaling in Chondrogenic Differentiation of BMSCs under Coupling of Pressure and Platelet-Rich Fibrin. Tissue Eng Regen Med 19, 823–837 (2022). https://doi.org/10.1007/s13770-022-00456-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00456-2

Keywords

Navigation