Skip to main content

Clinical Reference Strategy for the Selection of Treatment Materials for Maxillofacial Bone Transplantation: A Systematic Review and Network Meta-Analysis

Abstract

Bone graft materials have mixed effects of bone repair in the field of oral maxillofacial surgery. The qualitative analyses performed by previous studies imply that autogenous odontogenic materials and autogenous bone have similar effects on bone repair in clinical jaw bone transplantation. This retrospective systematic assessment and network meta-analysis aimed to analyze the best effect of clinical application of autogenous odontogenic materials and autogenous, allogeneic, and xenogeneic bone grafts in bone defect repair. A systematic review was performed by searching the PubMed, Cochrane Library, and other journal databases using selected keywords and Medical Subject Headings search terms. 10 Papers (n = 466) that met the inclusion criteria were selected. The assessment of heterogeneity did not reveal any overall statistical difference or heterogeneity (P = 0.051 > 0.05), whereas the comparison between autogenous and allogeneic bone grafts revealed local heterogeneity (P = 0.071 < 0.1). Risk of bias revealed nine unclear studies and one high-risk study. The overall consistency was good (P = 0.065 > 0.05), and the local inconsistency test did not reveal any inconsistency. The publication bias was good. The confidence regarding the ranking of bone graft materials after GRADE classification was moderate. The effects on bone repair in the descending order were as follows: autogenous odontogenic materials, xenogeneic bone, autogenous bone, and allogeneic bone. This result indicates that the autogenous odontogenic materials displayed stronger effects on bone repair compared to other bone graft materials. Autogenous odontogenic materials have broad development prospects in oral maxillofacial surgery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Precheur HV. Bone graft materials. Dent Clin North Am. 2007;51:729–46.

    PubMed  Article  Google Scholar 

  2. Doonquah L, Holmes PJ, Ranganathan LK, Robertson H. Bone grafting for implant surgery. Oral Maxillofac Surg Clin North Am. 2021;33:211–29.

    PubMed  Article  Google Scholar 

  3. Moussa NT, Dym H. Maxillofacial bone grafting materials. Dent Clin North Am. 2020;64:473–90.

    PubMed  Article  Google Scholar 

  4. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Zhang S, Li X, Qi Y, Ma X, Qiao S, Cai H, et al. Comparison of autogenous tooth materials and other bone grafts. Tissue Eng Regen Med. 2021;18:327–41.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury. 2011;42:S3-15.

    PubMed  Article  Google Scholar 

  7. Kim YK, Kim SG, Yun PY, Yeo IS, Jin SC, Oh JS, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:e39-45.

    PubMed  Article  Google Scholar 

  8. Trbakovic A, Hedenqvist P, Mellgren T, Ley C, Hilborn J, Ossipov D, et al. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model. J Dent. 2018;70:31–9.

    CAS  PubMed  Article  Google Scholar 

  9. Kim YK, Lee J, Um IW, Kim KW, Murata M, Akazawa T. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013;39:103–11.

    PubMed  PubMed Central  Article  Google Scholar 

  10. Horowitz RA, Leventis MD, Rohrer MD, Prasad HS. Bone grafting: history, rationale, and selection of materials and techniques. Compend Contin Educ Dent. 2014;35:1–6.

    PubMed  Google Scholar 

  11. Habibovic P, de Groot K. Osteoinductive biomaterials–properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1:25–32.

    CAS  PubMed  Article  Google Scholar 

  12. Jo SH, Kim YK, Choi YH. Histological evaluation of the healing process of various bone graft materials after engraftment into the human body. Materials (Basel). 2018;11:714.

    Article  CAS  Google Scholar 

  13. Gual-Vaqués P, Polis-Yanes C, Estrugo-Devesa A, Ayuso-Montero R, Mari-Roig A, López-López J. Autogenous teeth used for bone grafting: a systematic review. Med Oral Patol Oral Cir Bucal. 2018;23:e112–9.

    CAS  PubMed  Google Scholar 

  14. Indurkar MS, Awad MS, Lobo Gajiwala A, Samant U, D’Lima C. AutoBT: A new paradigm in periodontal regeneration. J Int Med Dent. 2018;5:51–5.

    Article  Google Scholar 

  15. Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:496–503.

    PubMed  Article  Google Scholar 

  16. Ferraz EP, Xavier SP, Azevedo FG, de Oliveira FS, Beloti MM, Rosa AL. Effect of autogenous and fresh-frozen bone grafts on osteoblast differentiation. J Dent. 2015;43:110–6.

    CAS  PubMed  Article  Google Scholar 

  17. Papageorgiou SN, Papageorgiou PN, Deschner J, Götz W. Comparative effectiveness of natural and synthetic bone grafts in oral and maxillofacial surgery prior to insertion of dental implants: Systematic review and network meta-analysis of parallel and cluster randomized controlled trials. J Dent. 2016;48:1–8.

    PubMed  Article  Google Scholar 

  18. Jun SH, Ahn JS, Lee JI, Ahn KJ, Yun PY, Kim YK. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure. J Adv Prosthodont. 2014;6:528–38.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Klein MO, Kammerer PW, Gotz H, Duschner H, Wagner W. Long-term bony integration and resorption kinetics of a xenogeneic bone substitute after sinus floor augmentation: histomorphometric analyses of human biopsy specimens. Int J Periodontics Restorative Dent. 2013;33:e101-110.

    PubMed  Article  Google Scholar 

  20. Kim YK, Lee J, Yun JY, Yun PY, Um IW. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study. J Periodontal Implant Sci. 2014;44:216–21.

    PubMed  PubMed Central  Article  Google Scholar 

  21. Kim SY, Kim SG, Lim SC, Bae CS. Effects on bone formation in ovariectomized rats after implantation of tooth ash and plaster of Paris mixture. J Oral Maxillofac Surg. 2004;62:852–7.

    PubMed  Article  Google Scholar 

  22. Kim BK, Kim SG, Kim SY, Lim SC, Kim YK. A comparison of bone generation capability in rabbits using tooth ash and plaster of Paris with platelet-rich plasma or fibrin sealant. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e8–14.

    PubMed  Article  Google Scholar 

  23. Kloss FR, Offermanns V, Kloss-Brandstätter A. Comparison of allogeneic and autogenous bone grafts for augmentation of alveolar ridge defects-A 12-month retrospective radiographic evaluation. Clin Oral Implants Res. 2018;29:1163–75.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Jung GU, Jeon TH, Kang MH, Um IW, Song IS, Ryu JJ, et al. Volumetric, radiographic, and histologic analyses of demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 for ridge preservation: A prospective randomized controlled trial in comparison with xenograft. Appl Sci (Basel). 2018;8:1288.

  25. Lutz R, Berger-Fink S, Stockmann P, Neukam FW, Schlegel KA. Sinus floor augmentation with autogenous bone vs. a bovine-derived xenograft - a 5-year retrospective study. Clin Oral Implants Res. 2015;26:644–8.

    PubMed  Article  Google Scholar 

  26. Reddy BR, Sudhakar J, Rajesh N, Sandeep V, Reddy YM, Gnana Sagar WR. Comparative clinical and radiographic evaluation of mineralized cancellous bone allograft (puros®) and autogenous bone in the treatment of human periodontal intraosseous defects: 6-months follow-up study. J Int Soc Prev Community Dent. 2016;6:S248–53.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Pang KM, Um IW, Kim YK, Woo JM, Kim SM, Lee JH. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone. Clin Oral Implants Res. 2017;28:809–15.

    PubMed  Article  Google Scholar 

  28. Xavier SP, Dias RR, Sehn FP, Kahn A, Chaushu L, Chaushu G. Maxillary sinus grafting with autograft vs. fresh frozen allograft: a split-mouth histomorphometric study. Clin Oral Implants Res. 2015;26:1080–5.

    PubMed  Article  Google Scholar 

  29. Schwarz F, Hazar D, Becker K, Sader R, Becker J. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study. J Clin Periodontol. 2018;45:996–1004.

    CAS  PubMed  Article  Google Scholar 

  30. van der Zee E. Guided bone regeneration for single tooth replacements by oral implants. Ned Tijdschr Tandheelkd. 1999;106:195–8.

    PubMed  Google Scholar 

  31. Moghaddas H, Stahl SS. Alveolar bone remodeling following osseous surgery. A Clin Study. J Periodontol. 1980;51:376–81.

  32. Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010;16:493–507.

    CAS  PubMed  Article  Google Scholar 

  33. de Sousa CA, Lemos CAA, Santiago-Junior JF, Faverani LP, Pellizzer EP. Bone augmentation using autogenous bone versus biomaterial in the posterior region of atrophic mandibles: a systematic review and meta-analysis. J Dent. 2018;76:1–8.

    PubMed  Article  Google Scholar 

  34. Borie E, Fuentes R, Del Sol M, Oporto G, Engelke W. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Ann Anat. 2011;193:412–7.

    CAS  PubMed  Article  Google Scholar 

  35. Spin-Neto R, Stavropoulos A, Pereira LAVD, Marcantonio E, Wenzel A. Fate of autologous and fresh-frozen allogeneic block bone grafts used for ridge augmentation. A CBCT-based analysis. Clin Oral Implant Res. 2013;24:167–73.

  36. Gomes KU, Carlini JL, Biron C, Rapoport A, Dedivitis RA. Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants. J Oral Maxillofac Surg. 2008;66:2335–8.

    PubMed  Article  Google Scholar 

  37. Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg. 2005;16:981–9.

    PubMed  Article  Google Scholar 

  38. Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, et al. Current trends and future perspectives of bone substitute materials: from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40:706–18.

    PubMed  Article  Google Scholar 

  39. Stopa Z, Siewert-Gutowska M, Abed K, Szubińska-Lelonkiewicz D, Kamiński A, Fiedor P. Evaluation of the safety and clinical efficacy of allogeneic bone grafts in the reconstruction of the maxilla and mandible. Transplant Proc. 2018;50:2199–201.

    CAS  PubMed  Article  Google Scholar 

  40. Sandberg OH, Aspenberg P. Inter-trabecular bone formation: a specific mechanism for healing of cancellous bone. Acta Orthop. 2016;87:459–65.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Joshi CP, D'Lima CB, Samat UC, Karde PA, Patil AG, Dani NH. Comparative alveolar ridge preservation using allogenous tooth graft versus free-dried bone allograft: a randomized, controlled, prospective, clinical pilot study. Contemp Clin Dent. 2017;8:211–7.

    CAS  PubMed  Article  Google Scholar 

  42. Kameo Y, Sakano N, Adachi T. Theoretical concept of cortical to cancellous bone transformation. Bone Rep. 2020;12:100260.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Wear KA. Mechanisms of interaction of ultrasound with cancellous bone: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67:454–82.

    PubMed  Article  Google Scholar 

  44. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93:2227–36.

    PubMed  Article  Google Scholar 

  45. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33:203–13.

    PubMed  Article  Google Scholar 

  46. Di Stefano DA, Arosio P, Pagnutti S, Vinci R, Gherlone EF. Distribution of trabecular bone density in the maxilla and mandible. Implant Dent. 2019;28:340–8.

    PubMed  Article  Google Scholar 

  47. Wilkins EM. Clinical practice of the dental hygienist. 10th ed. Wolters Kluwer Health: Lippincott Williams & Wilkins; 2009.

  48. Thorwarth M, Srour S, Felszeghy E, Kessler P, Schultze-Mosgau S, Schlegel KA. Stability of autogenous bone grafts after sinus lift procedures: a comparative study between anterior and posterior aspects of the iliac crest and an intraoral donor site. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:278–84.

    PubMed  Article  Google Scholar 

  49. Sakkas A, Schramm A, Winter K, Wilde F. Risk factors for post-operative complications after procedures for autologous bone augmentation from different donor sites. J Craniomaxillofac Surg. 2018;46:312–22.

    PubMed  Article  Google Scholar 

  50. Riachi F, Naaman N, Tabarani C, Aboelsaad N, Aboushelib MN, Berberi A, et al. Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment. Int J Dent. 2012;2012:737262.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Simion M, Fontana F, Rasperini G, Maiorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio Oss). Clin Oral Implants Res. 2007;18:620–9.

    PubMed  Article  Google Scholar 

Download references

Acknowledgement

We would like to express our sincere appreciation to The CONVERSATIONALIST club of Shangdong First Medical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eui-Seok Lee or Heng Bo Jiang.

Ethics declarations

Conflict of interest

We declare no financial or personal relationships with other people or organizations that can inappropriately influence our work.

Ethical statement

There are no animal experiements carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 744 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, X., Li, Y. et al. Clinical Reference Strategy for the Selection of Treatment Materials for Maxillofacial Bone Transplantation: A Systematic Review and Network Meta-Analysis. Tissue Eng Regen Med 19, 437–450 (2022). https://doi.org/10.1007/s13770-022-00445-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00445-5

Keywords

  • Network meta-analysis
  • Autogenous tooth
  • Autogenous bone
  • Allogeneic bone
  • Xenogeneic bone