Rodrigues JC, Haas M, Reich HN. IgA nephropathy. Clin J Am Soc Nephrol. 2017;12:677–86.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy. Pediatr Nephrol. 2018;33:763–77.
PubMed
Article
Google Scholar
Chou YH, Pan SY, Yang CH, Lin SL. Stem cells and kidney regeneration. J Formos Med Assoc. 2014;113:201–9.
Liu D, Cheng F, Pan S, Liu Z. Stem cells: a potential treatment option for kidney diseases. Stem Cell Res Ther. 2020;11:249.
PubMed
PubMed Central
Article
Google Scholar
Hyun YY, Kim IO, Kim MH, Nam DH, Lee MH, Kim JE, et al. Adipose-derived stem cells improve renal function in a mouse model of IgA nephropathy. Cell Transplant. 2012;21:2425–39.
PubMed
Article
Google Scholar
Rota C, Morigi M, Imberti B. Stem cell therapies in kidney diseases: progress and challenges. Int J Mol Sci. 2019;20:2790.
CAS
PubMed Central
Article
Google Scholar
Ribeiro PC, Lojudice FH, Fernandes-Charpiot IMM, Baptista MASF, de Almeida Araújo S, Mendes GEF, et al. Therapeutic potential of human induced pluripotent stem cells and renal progenitor cells in experimental chronic kidney disease. Stem Cell Res Ther. 2020;11:530.
CAS
PubMed
PubMed Central
Article
Google Scholar
Burdeyron P, Giraud S, Hauet T, Steichen C. Urine-derived stem/progenitor cells: a focus on their characterization and potential. World J Stem Cells. 2020;12:1080–96.
PubMed
PubMed Central
Article
Google Scholar
Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F, et al. Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol. 2015;26:1961–74.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32:8771–82.
CAS
PubMed
PubMed Central
Article
Google Scholar
Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8:2041731417726464.
Martínez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP. Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. J Control Release. 2011;152:232–40.
PubMed
Article
CAS
Google Scholar
Kim DY, Park H, Kim SW, Lee JW, Lee KY. Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation. Carbohydr Polym. 2017;157:1281–7.
CAS
PubMed
Article
Google Scholar
Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, et al. Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym. 2011;84:118–25.
CAS
Article
Google Scholar
Vahedi M, Barzin J, Shokrolahi F, Shokrollahi P. Self-healing, injectable gelatin hydrogels cross-linked by dynamic schiff base linkages support cell adhesion and sustained release of antibacterial drugs. Macromol Mater Eng. 2018;303:1800200.
Article
CAS
Google Scholar
Jalalvandi E, Hanton LR, Moratti SC. Schiff-base based hydrogels as degradable platforms for hydrophobic drug delivery. Eur Polym J. 2017;90:13–24.
CAS
Article
Google Scholar
Malik US, Niazi MBK, Jahan Z, Zafar MI, Vo DVN, Sher F. Nano-structured dynamic Schiff base cues as robust self-healing polymers for biomedical and tissue engineering applications: a review. Environ Chem Lett. 2021;20:495–517.
Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus. 2012;2:278–91.
PubMed
PubMed Central
Article
Google Scholar
Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8:3280–94.
CAS
PubMed
PubMed Central
Article
Google Scholar
Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hozumi T, Kageyama T, Ohta S, Fukuda J, Ito T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation. Biomacromolecules. 2018;19:288–97.
CAS
PubMed
Article
Google Scholar
Yang G, Xiao Z, Ren X, Long H, Qian H, Ma K, et al. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ. 2016;4:e2497.
PubMed
PubMed Central
Article
CAS
Google Scholar
Sakai S, Ohi H, Taya M. Gelatin/hyaluronic acid content in hydrogels obtained through blue light-induced gelation affects hydrogel properties and adipose stem cell behaviors. Biomolecules. 2019;9:342.
CAS
PubMed Central
Article
Google Scholar
Poveda-Reyes S, Moulisova V, Sanmartín-Masiá E, Quintanilla-Sierra L, Salmerón-Sánchez M, Ferrer GG. Gelatin—hyaluronic acid hydrogels with tuned stiffness to counterbalance cellular forces and promote cell differentiation. Macromol Biosci. 2016;16:1311–24.
CAS
PubMed
Article
Google Scholar
Le Thi P, Son JY, Lee Y, Ryu SB, Park KM, Park KD. Enzymatically crosslinkable hyaluronic acid-gelatin hybrid hydrogels as potential bioinks for tissue regeneration. Macromol Res. 2020;28:400–6.
Article
CAS
Google Scholar
Joo H, Park J, Sutthiwanjampa C, Kim H, Bae T, Kim W, et al. Surface coating with hyaluronic acid-gelatin-crosslinked hydrogel on gelatin-conjugated poly(dimethylsiloxane) for implantable medical device-induced fibrosis. Pharmaceutics. 2021;13:269.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tan H, Rubin JP, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis. 2010;6:173–80.
PubMed
PubMed Central
Article
Google Scholar
Fan M, Zhang Z, Mao J, Tan H. Injectable multi-arm poly(ethylene glycol)/hyaluronic acid hydrogels for adipose tissue engineering. J Macromol Sci A. 2015;52:345–52.
CAS
Article
Google Scholar
Wei Z, Zhao J, Chen YM, Zhang P, Zhang Q. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep. 2016;6:37841.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li NN, Fu CP, Zhang LM. Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater Sci Eng C Mater Biol Appl. 2014;36:287–93.
Lopez-Cebral R, Martín-Pastor M, Evelin Parraga J, Konat Zorzi G, Seijo B, Sanchez A. Chemically modified gelatin as biomaterial in the design of new nanomedicines. Med Chem. 2011;7:145–54.
Wu F, Pang Y, Liu J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat Commun. 2020;11:4502.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gao WW, Zheng J, Yun W, Kang PJ, Park G, Song G, et al. Generation of induced nephron progenitor-like cells from human urine-derived cells. Int J Mol Sci. 2021;22:13449.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li L, Wang N, Jin X, Deng R, Nie S, Sun L, et al. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials. 2014;35:3903–17.
CAS
PubMed
Article
Google Scholar
Amonpattaratkit P, Khunmanee S, Kim DH, Park H. Synthesis and characterization of gelatin-based crosslinkers for the fabrication of superabsorbent hydrogels. Materials (Basel). 2017;10:826.
Article
CAS
Google Scholar
Sanmartín-Masiá E, Poveda-Reyes S, Gallego Ferrer G. Extracellular matrix–inspired gelatin/hyaluronic acid injectable hydrogels. Int J Polym Mater. 2017;66:280–8.
Liu M, Li W, Rong J, Zhou C. Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci. 2012;290:895–905.
CAS
Article
Google Scholar
Moura MJ, Figueiredo MM, Gil MH. Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules. 2007;8:3823–9.
CAS
PubMed
Article
Google Scholar
Sarker A, Amirian J, Min YK, Lee BT. HAp granules encapsulated oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone regeneration. Int J Biol Macromol. 2015;81:898–911.
CAS
PubMed
Article
Google Scholar
Zhang F, He C, Cao L, Feng W, Wang H, Mo X, et al. Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol. 2011;48:474–81.
CAS
PubMed
Article
Google Scholar
Gupta B, Tummalapalli M, Deopura BL, Alam MS. Preparation and characterization of in-situ crosslinked pectin–gelatin hydrogels. Carbohydr Polym. 2014;106:312–8.
CAS
PubMed
Article
Google Scholar
Nair S, Remya NS, Remya S, Nair PD. A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications. Carbohydr Polym. 2011;85:838–44.
CAS
Article
Google Scholar
Rodrigues WF, Miguel CB, Napimoga MH, Oliveira CF, Lazo-Chica JE. Establishing standards for studying renal function in mice through measurements of body size-adjusted creatinine and urea levels. Biomed Res Int. 2014;2014:872827.
Jamshidzadeh A, Heidari R, Mohammadi-Samani S, Azarpira N, Najbi A, Jahani P, et al. A comparison between the nephrotoxic profile of gentamicin and gentamicin nanoparticles in mice. J Biochem Mol Toxicol. 2015;29:57–62.
CAS
PubMed
Article
Google Scholar
Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int Suppl. 2004;66:S56–61.
Article
Google Scholar
Black LM, Lever JM, Agarwal A. Renal inflammation and fibrosis: a double-edged sword. J Histochem Cytochem. 2019;67:663–81.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lee BT, Ahmed FA, Hamm LL, Teran FJ, Chen CS, Liu Y, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrol. 2015;16:77.
CAS
PubMed
PubMed Central
Article
Google Scholar
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015;2015:948417.
Guo W, Feng JM, Yao L, Sun L, Zhu GQ. Transplantation of endothelial progenitor cells in treating rats with IgA nephropathy. BMC Nephrol. 2014;15:110.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rao KB, Malathi N, Narashiman S, Rajan ST. Evaluation of myofibroblasts by expression of alpha smooth muscle actin: a marker in fibrosis, dysplasia and carcinoma. J Clin Diagn Res. 2014;8:ZC14–7.
Google Scholar
Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.
PubMed
PubMed Central
Google Scholar
Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60:2118–28.
CAS
PubMed
Article
Google Scholar
Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005;166:545–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lee SJ, Wang HJ, Kim TH, Choi JS, Kulkarni G, Jackson JD, et al. In situ tissue regeneration of renal tissue induced by collagen hydrogel injection. Stem Cells Transl Med. 2018;7:241–50.
Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012;41:2193–221.
CAS
PubMed
Article
Google Scholar
Yeo Y, Geng W, Ito T, Kohane DS, Burdick JA, Radisic M. Photocrosslinkable hydrogel for myocyte cell culture and injection. J Biomed Mater Res B Appl Biomater. 2007;81:312–22.