Skip to main content

IL-33 Promotes ST2-Dependent Fibroblast Maturation via P38 and TGF-β in a Mouse Model of Epidural Fibrosis

Abstract

BACKGROUND:

Recent evidence suggests that IL-33, a novel member of the IL-1β family, is involved in organ fibrosis. However, the roles of IL-33 and its receptor ST2 in epidural fibrosis post spine operation remain elusive.

METHODS:

A mouse model of epidural fibrosis was established after laminectomy. IL-33 in the wound tissues post laminectomy was measured with Western blotting, ELISA and immunoflurosence imaging. The fibroblast cell line NIH-3T3 and primary fibroblasts were treated with IL-33 and the mechanisms of maturation of fibroblasts into myofibroblasts were analyzed. To explore roles of IL-33 and its receptor ST2 in vivo, IL-33 knockout (KO) and ST2 KO mice were employed to construct the model of laminectomy. The epidural fibrosis was evaluated using H&E and Masson staining, western-blotting, ELISA and immunohistochemistry.

RESULTS:

As demonstrated in western blotting and ELISA, IL-33 was increased in epidural wound tissues post laminectomy. The immunoflurosence imaging revealed that endothelial cells (CD31+) and fibroblasts (α-SAM+) were major producers of IL-33 in the epidural wound tissues. In vitro, IL-33 promoted fibroblast maturation, which was blocked by ST2 neutralization antibody, suggesting that IL-33-promoted-fibroblasts maturation was ST2 dependent. Further, IL-33/ST2 activated MAPK p38 and TGF-β pathways. Either p38 inhibitor or TGF-β inhibitor decreased fibronectin and α-SAM production from IL-33-treated fibroblasts, suggesting that p38 and TGF-β were involved with IL-33/ST2 signal pathways in the fibroblasts maturation. In vivo, IL-33 KO or ST2 KO decreased fibronectin, α-SMA and collagen deposition in the wound tissues of mice that underwent spine surgery. In addition, TGF-β1 was decreased in IL-33 KO or ST2 KO epidural wound tissues.

CONCLUSION:

In summary, IL-33/ST2 promoted fibroblast differentiation into myofibroblasts via MAPK p38 and TGF-β in a mouse model of epidural fibrosis after laminectomy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Koedijk JB, van Rijswijk J, Oranje WA, van den Bergh JP, Bours SP, Savelberg HH, et al. Sedentary behaviour and bone health in children, adolescents and young adults: a systematic review. Osteoporos Int. 2017;28:2507–19.

    CAS  Article  Google Scholar 

  2. Daniell JR, Osti OL. Failed back surgery syndrome: a review article. Asian Spine J. 2018;12:372–9.

    Article  Google Scholar 

  3. Liu J, Ni B, Zhu L, Yang J, Cao X, Zhou W. Mitomycin C-polyethylene glycol controlled-release film inhibits collagen secretion and induces apoptosis of fibroblasts in the early wound of a postlaminectomy rat model. Spine J. 2010;10:441–7.

    Article  Google Scholar 

  4. Song Z, Wu T, Sun J, Wang H, Hua F, Nicolas YSM, et al. Metformin attenuates post-epidural fibrosis by inhibiting the TGF-β1/Smad3 and HMGB1/TLR4 signaling pathways. J Cell Mol Med. 2021;25:3272–83.

    CAS  Article  Google Scholar 

  5. Geudeke MW, Krediet AC, Bilecen S, Huygen FJPM, Rijsdijk M. Effectiveness of epiduroscopy for patients with failed back surgery syndrome: a systematic review and meta-analysis. Pain Pract. 2021;21:468–81.

    Article  Google Scholar 

  6. Li X, Chen S, Yan L, Wang J, Pei M. Prospective application of stem cells to prevent post-operative skeletal fibrosis. J Orthop Res. 2019;37:1236–45.

    CAS  Article  Google Scholar 

  7. Wang H, Sun W, Fu D, Shen Y, Chen YY, Wang L. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy. J Orthop Translat. 2018;13:41–9.

    CAS  Article  Google Scholar 

  8. Hallab NJ, Bao QB, Brown T. Assessment of epidural versus intradiscal biocompatibility of PEEK implant debris: an in vivo rabbit model. Eur Spine J. 2013;22:2740–51.

    Article  Google Scholar 

  9. Lefrançais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 2012;109:1673–8.

    CAS  Article  Google Scholar 

  10. De la Fuente M, MacDonald TT, Hermoso MA. The IL-33/ST2 axis: role in health and disease. Cytokine Growth Factor Rev. 2015;26:615–23.

    Article  Google Scholar 

  11. Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 axis in organ fibrosis. Front Immunol. 2018;9:2432.

    Article  Google Scholar 

  12. Borthwick LA. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin Immunopathol. 2016;38:517–34.

    CAS  Article  Google Scholar 

  13. Sun Z, Chang B, Gao M, Zhang J, Zou Z. IL-33-ST2 axis in liver disease: progression and challenge. Mediators Inflamm. 2017;2017:5314213.

    PubMed  PubMed Central  Google Scholar 

  14. Yang F, Zhu P, Duan L, Yang L, Wang J. IL33 and kidney disease (Review). Mol Med Rep. 2016;13:3–8.

    CAS  Article  Google Scholar 

  15. Dudek M, Kałużna-Oleksy M, Migaj J, Straburzyńska-Migaj E. Clinical value of soluble ST2 in cardiology. Adv Clin Exp Med. 2020;29:1205–10.

    Article  Google Scholar 

  16. Homsak E, Gruson D. Soluble ST2: a complex and diverse role in several diseases. Clin Chim Acta. 2020;507:75–87.

    CAS  Article  Google Scholar 

  17. D’Urso M, Kurniawan NA. Mechanical and physical regulation of fibroblast-myofibroblast transition: from cellular mechanoresponse to tissue pathology. Front Bioeng Biotechnol. 2020;8:609653.

    Article  Google Scholar 

  18. Coelho LL, Pereira IR, Pereira MCS, Mesquita L, Lannes-Vieira J, Adesse D, et al. Trypanosoma cruzi activates mouse cardiac fibroblasts in vitro leading to fibroblast-myofibroblast transition and increase in expression of extracellular matrix proteins. Parasit Vectors. 2018;11:72.

    Article  Google Scholar 

  19. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Front Immunol. 2020;11:1598.

    CAS  Article  Google Scholar 

  20. Jin R, Xu J, Gao Q, Mao X, Yin J, Lu K, et al. IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov. 2020;6:33.

    CAS  Article  Google Scholar 

  21. Liu J, Peng L, Liu Y, Wu K, Wang S, Wang X, et al. Topical TWEAK accelerates healing of experimental burn wounds in mice. Front Pharmacol. 2018;9:660.

    Article  Google Scholar 

  22. Seluanov A, Vaidya A, Gorbunova V. Establishing primary adult fibroblast cultures from rodents. J Vis Exp. 2010. https://doi.org/10.3791/2033.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin M, Guo R, Su Z, Ke S, Zeng D. Combination leflunomide and methotrexate impedes the recovery of liver fibrosis, partly through inhibition of myeloid cell admittance. Mol Med Rep. 2019;19:1622–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bollong MJ, Yang B, Vergani N, Beyer BA, Chin EN, Zambaldo C, et al. Small molecule-mediated inhibition of myofibroblast transdifferentiation for the treatment of fibrosis. Proc Natl Acad Sci U S A. 2017;114:4679–84.

    CAS  Article  Google Scholar 

  25. Lipsky BP, Toy DY, Swart DA, Smithgall MD, Smith D. Deletion of the ST2 proximal promoter disrupts fibroblast-specific expression but does not reduce the amount of soluble ST2 in circulation. Eur J Immunol. 2012;42:1863–9.

    CAS  Article  Google Scholar 

  26. Molkentin JD, Bugg D, Ghearing N, Dorn LE, Kim P, Sargent MA, et al. Fibroblast-specific genetic manipulation of p38 mitogen-activated protein kinase in vivo reveals its central regulatory role in fibrosis. Circulation. 2017;136:549–61.

    CAS  Article  Google Scholar 

  27. Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, et al. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 2017;127:3770–83.

    Article  Google Scholar 

  28. Luzina IG, Pickering EM, Kopach P, Kang PH, Lockatell V, Todd NW, et al. Full-length IL-33 promotes inflammation but not Th2 response in vivo in an ST2-independent fashion. J Immunol. 2012;189:403–10.

    CAS  Article  Google Scholar 

  29. Guo Z, Wu J, Zhao J, Liu F, Chen Y, Bi L, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma. 2014;51:863–9.

    CAS  Article  Google Scholar 

  30. Yanaba K, Yoshizaki A, Asano Y, Kadono T, Sato S. Serum IL-33 levels are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. Clin Rheumatol. 2011;30:825–30.

    Article  Google Scholar 

  31. Marvie P, Lisbonne M, L'helgoualc'h A, Rauch M, Turlin B, Preisser L, et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J Cell Mol Med. 2010;14:1726–39.

    CAS  Article  Google Scholar 

  32. Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, et al. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol. 2017;812:18–27.

    CAS  Article  Google Scholar 

  33. Vianello E, Dozio E, Tacchini L, Frati L, Corsi Romanelli MM. ST2/IL-33 signaling in cardiac fibrosis. Int J Biochem Cell Biol. 2019;116:105619.

    CAS  Article  Google Scholar 

  34. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281:154–68.

    CAS  Article  Google Scholar 

  35. Luzina IG, Fishelevich R, Hampton BS, Courneya JP, Parisella FR, Lugkey KN, et al. Full-length IL-33 regulates Smad3 phosphorylation and gene transcription in a distinctive AP2-dependent manner. Cell Immunol. 2020;357:104203.

    CAS  Article  Google Scholar 

  36. Jin Z, Sun J, Song Z, Chen K, Nicolas YSM, Kc R, et al. Neutrophil extracellular traps promote scar formation in post-epidural fibrosis. NPJ Regen Med. 2020;5:19

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fu J, Lin SH, Wang CJ, Li SY, Feng XY, Liu Q, et al. HMGB1 regulates IL-33 expression in acute respiratory distress syndrome. Int Immunopharmacol. 2016;38:267–74.

    CAS  Article  Google Scholar 

  38. Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol. 2016;17:122–31.

    CAS  Article  Google Scholar 

  39. Shani O, Vorobyov T, Monteran L, Lavie D, Cohen N, Raz Y, et al. Fibroblast-derived IL33 facilitates breast cancer metastasis by modifying the immune microenvironment and driving type 2 immunity. Cancer Res. 2020;80:5317–29.

    CAS  Article  Google Scholar 

  40. Cho N, Razipour SE, McCain ML. Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts. Exp Biol Med (Maywood). 2018;243:601–12.

    CAS  Article  Google Scholar 

  41. Tan Z, Liu Q, Jiang R, Lv L, Shoto SS, Maillet I, et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol Immunol. 2018;15:388–98.

    CAS  Article  Google Scholar 

  42. Oshio T, Komine M, Tsuda H, Tominaga SI, Saito H, Nakae S, et al. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. J Dermatol Sci. 2017;85:106–14.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 82172486, 82171738, and 81671563), Jiangsu Provincial Commission of Health and Family Planning, “Six One” Project of Jiangsu province LGY2016018 and Jiangsu Provincial Personnel Department “the Great of Six Talented Man Peak” Project WSW-040. JL and MZ conceived and designed the study. HW, TW, FH, JS, YB, and WW performed the experiments. HW and MZ drafted the manuscript. JL and MZ critically revised the manuscript. All authors read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshun Zhang.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Ethical Statement

All animal experimental protocols were examined and approved by the Animal Protection and Use Committee of Nanjing Medical University (1910018).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, T., Hua, F. et al. IL-33 Promotes ST2-Dependent Fibroblast Maturation via P38 and TGF-β in a Mouse Model of Epidural Fibrosis. Tissue Eng Regen Med 19, 577–588 (2022). https://doi.org/10.1007/s13770-021-00425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00425-1

Keywords

  • Epidural fibrosis
  • Fibroblast
  • IL-33
  • ST2
  • p38
  • TGF-β1