Skip to main content

M2 Macrophage-Derived Concentrated Conditioned Media Significantly Improves Skin Wound Healing

Abstract

Background:

Macrophages, with many different phenotypes play a major role during wound healing process, secreting the cytokines crucial to angiogenesis, cell recruitment and ECM remodeling. Therefore, macrophage-derived cytokines may be attractive therapeutic resource for wound healing.

Methods:

To obtain a conditioned media (CM) from macrophages, human monocyte THP-1 cells were seeded on TCP or human fibroblast-derived matrix (hFDM) and they were differentiated into M1 or M2 phenotype using distinct protocols. A combination of different substrates and macrophage phenotypes produced M1- and M2-CM or M1-hFDM- and M2-hFDM-CM, respectively. Proteome microarray determines the cytokine contents in those CMs. CMs-treated human dermal fibroblast (hDFB) was analyzed using collagen synthesis and wound scratch assay. Concentrated form of the CM (CCM), obtained by high-speed centrifugation, was administered to a murine full-thickness wound model using alginate patch, where alginate patch was incubated in the M2-CCM overnight at 4 °C before transplantation. On 14 day post-treatment, examination was carried out through H&E and Herovici staining. Keratinocyte and M2 macrophages were also evaluated via immunofluorescence staining.

Results:

Cytokine analysis of CMs found CCL1, CCL5, and G-CSF, where CCL5 is more dominant. We found increased collagen synthesis and faster wound closure in hDFB treated with M2-CM. Full-thickness wounds treated by M2-hFDM-CCM containing alginate patch showed early wound closure, larger blood vessels, increased mature collagen deposition, enhanced keratinocyte maturation and more M2-macrophage population.

Conclusion:

Our study demonstrated therapeutic potential of the CM derived from M2 macrophages, where the cytokines in the CM may have played an active role for enhanced wound healing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regener. 2008;16:585–601.

    Article  Google Scholar 

  2. Behm B, Babilas P, Landthaler M, Schreml S. Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol. 2012;26:812–20.

    CAS  Article  PubMed  Google Scholar 

  3. Rodero MP, Khosrotehrani K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010;3:643–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Veer W, van Egmond M, Niessen F, Beelen R. Macrophages in skin injury and repair. Immunobiology. 2011;216:753–62.

    Article  PubMed  Google Scholar 

  5. Minutti CM, Knipper JA, Allen JE, Zaiss DM. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 2017;61:3-11.

  6. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73:3861–85.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rollins BJ. Chemokines. Blood. 1997;90:909–28.

    CAS  Article  PubMed  Google Scholar 

  8. Miller MD, Krangel MS. The human cytokine I-309 is a monocyte chemoattractant. Proc Natl Acad Sci U S A. 1992;89:2950–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Tay J, Levesque JP, Winkler IG. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol. 2017;105:129–40.

    CAS  Article  PubMed  Google Scholar 

  10. Kubo M, Van De Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG et al. Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol. 2001;117:1369-81.

  11. Guo M, Toda K, Grinnell F. Activation of human keratinocyte migration on type I collagen and fibronectin. J Cell Sci. 1990;96:197–205.

    CAS  Article  PubMed  Google Scholar 

  12. Hopkinson I. Molecular components of the extracellular matrix. J Wound Care. 1992;1:52–4.

    CAS  Article  PubMed  Google Scholar 

  13. Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery (Oxf). 2017;35:473–7.

    Article  Google Scholar 

  14. Motz K, Lina I, Murphy MK, Drake V, Davis R, Tsai HW, et al. M2 macrophages promote collagen expression and synthesis in laryngotracheal stenosis fibroblasts. Laryngoscope. 2021;131:E346–53.

    CAS  Article  PubMed  Google Scholar 

  15. Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol. 1994;55:410–22.

    Article  PubMed  Google Scholar 

  16. Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D. Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor β-1. Ann Surg Oncol. 1998;5:271–8.

    CAS  Article  PubMed  Google Scholar 

  17. Savitri C, Ha SS, Liao E, Du P, Park K. Extracellular matrices derived from different cell sources and their effect on macrophage behavior and wound healing. J Mater Chem B. 2020;8:9744–55.

    CAS  Article  PubMed  Google Scholar 

  18. Li Z, Bratlie KM. Fibroblasts treated with macrophage conditioned medium results in phenotypic shifts and changes in collagen organization. Mater Sci Eng C Mater Biol Appl. 2021;122:111915.

    CAS  Article  PubMed  Google Scholar 

  19. He XT, Li X, Yin Y, Wu RX, Xu XY, Chen FM. The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells. J Cell Mol Med. 2018;22:1302–15.

    CAS  PubMed  Google Scholar 

  20. Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol. 2020;235:5555–69.

    CAS  Article  PubMed  Google Scholar 

  21. Mehanna RA, Nabil I, Attia N, Bary AA, Razek KA, Ahmed TA, et al. The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats. Biomed Res Int. 2015;2015:846062.

  22. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym. 2020;236:116025.

    CAS  Article  PubMed  Google Scholar 

  23. Ha SS, Song ES, Du P, Suhaeri M, Lee JH, Park K. Novel ECM patch combines poly (vinyl alcohol), human fibroblast-derived matrix, and mesenchymal stem cells for advanced wound healing. ACS Biomater Sci Eng. 2020;6:4266–75.

    CAS  Article  PubMed  Google Scholar 

  24. Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal. 2013;11:29.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. He R, Yin H, Yuan B, Liu T, Luo L, Huang P, et al. IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Mol Immunol. 2017;90:42–9.

    CAS  Article  PubMed  Google Scholar 

  26. Kim MS, Song HJ, Lee SH, Lee CK. Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol. 2014;13:44–51.

    Article  PubMed  Google Scholar 

  27. Shen GY, Park IH, Song YS, Joo HW, Lee Y, Shin JH, et al. Local injection of granulocyte-colony stimulating factor accelerates wound healing in a rat excisional wound model. Tissue Eng Regen Med. 2016;13:297–303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Kroeze KL, Jurgens WJ, Doulabi BZ, van Milligen FJ, Scheper RJ, Gibbs S. Chemokine-mediated migration of skin-derived stem cells: predominant role for CCL5/RANTES. J Invest Dermatol. 2009;129:1569–81.

    CAS  Article  PubMed  Google Scholar 

  29. Bünemann E, Hoff NP, Buhren BA, Wiesner U, Meller S, Bölke E, et al. Chemokine ligand–receptor interactions critically regulate cutaneous wound healing. Eur J Med Res. 2018;23:4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. El Masry MS, Chaffee S, Das Ghatak P, Mathew-Steiner SS, Das A, Higuita-Castro N, et al. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization. FASEB J. 2019;33:2144–55.

    Article  PubMed  Google Scholar 

  31. Yang R, Liao Y, Wang L, He P, Hu Y, Yuan D, et al. Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front Immunol. 2019;10:2346.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N, et al. Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest. 2012;122:711–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Suga H, Sugaya M, Fujita H, Asano Y, Tada Y, Kadono T, et al. TLR4, rather than TLR2, regulates wound healing through TGF-β and CCL5 expression. J Dermatol Sci. 2014;73:117–24.

    CAS  Article  PubMed  Google Scholar 

  34. Huang H, Liu J, Hao H, Tong C, Ti D, Liu H, et al. G-CSF administration after the intraosseous infusion of hypertonic hydroxyethyl starches accelerating wound healing combined with hemorrhagic shock. Biomed Res Int. 2016;2016:5317630.

  35. Tanha S, Rafiee-Tehrani M, Abdollahi M, Vakilian S, Esmaili Z, Naraghi ZS, et al. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo. J Biomed Mater Res A. 2017;105:2830–42.

    CAS  Article  PubMed  Google Scholar 

  36. Hoffmann EJ, Ponik SM. Biomechanical contributions to macrophage activation in the tumor microenvironment. Front Oncol. 2020;10:787.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare (HI17C1234), Republic of Korea. This work was also partly supported by a National Research Foundation of Korea (NRF) Grant (No. 2020R1A2C2007972) from the Ministry of Science and ICT, Republic of Korea. Korea Health Industry Development Institute, HI17C1234, Kwideok Park, National Research Foundation of Korea, 2020R1A2C2007972, Kwideok Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwideok Park.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical statement

Current animal study was performed in accordance with the Korea Institute of Science and Technology Animal Care and Use Committee Guidelines (KIST-2021–04-053).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savitri, C., Kwon, J.W., Drobyshava, V. et al. M2 Macrophage-Derived Concentrated Conditioned Media Significantly Improves Skin Wound Healing. Tissue Eng Regen Med 19, 617–628 (2022). https://doi.org/10.1007/s13770-021-00414-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00414-4

Keywords

  • Extracellular matrix
  • Macrophage
  • Wound healing
  • Cytokines
  • Alginate