Skip to main content

Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization

Abstract

Background:

Autologous vessels graft (Inner diameter < 6 mm) harvesting always challenged during bypass grafting surgery and its complication shows poor outcome. Tissue engineered vascular graft allow to generate biological graft without any immunogenic complication. The approach presented in this study is to induce graft remodeling through heparin coating in luminal surface of small diameter (Inner diameter < 1 mm) decellularized arterial graft.

Methods:

Decellularization of graft was done using SDS, combination of 0.5% sodium dodecyl sulfate and 0.5% sodium deoxycholate and only sodium deoxycholate. Decellularization was confirmed on basis of histology, and DAPI. Characterization of extracellular matrix was analyzed using histology and scanning electron microscopy. Surface modification of decellularized vascular graft was done with heparin coating. Heparin immobilization was evaluated by toluidine blue stain. Heparin-coated graft was transplanted end to end anastomosis in femoral artery in rat.

Results:

Combination of 0.5% sodium dodecyl sulfate and 0.5% Sodium deoxycholate showed complete removal of xenogeneic cells. The heparin coating on luminal surface showed anti-thrombogenicity and endothelialization. Mechanical testing revealed no significant differences in strain characteristics and modulus between native tissues, decellularized scaffolds and transplanted scaffold. Collectively, this study proposed a heparin-immobilized ECM coating to surface modification offering functionalize biomaterials for developing small-diameter vascular grafts.

Conclusion:

We conclude that xenogeneic decellularized arterial scaffold with heparin surface modification can be fabricated and successfully transplanted small diameter (inner diameter < 1 mm) decellularized arterial graft.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–528.

    Article  Google Scholar 

  2. Malmberg M, Gunn J, Rautava P, Sipilä J, Kytö V. Outcome of acute myocardial infarction versus stable coronary artery disease patients treated with coronary bypass surgery. Ann Med. 2021;53:70–7.

    PubMed  Article  Google Scholar 

  3. Kshersagar J, Kshirsagar R, Desai S, Bohara R, Joshi M. Decellularized amnion scaffold with activated PRP: a new paradigm dressing material for burn wound healing. Cell Tissue Bank. 2018;19:423–36.

    CAS  PubMed  Article  Google Scholar 

  4. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4:256.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Mendis S, Puska P, Norrving B, World Health Organization. Global atlas on cardiovascular disease prevention and control. World Health Organization; 2011.

  6. Shu J, Santulli G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis. 2018;1:379–81.

    Article  CAS  Google Scholar 

  7. American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes—2018. Diabetes Care. 2018;41:S86–104.

    Article  Google Scholar 

  8. Hiatt WR, Fowkes FG, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;5:32–40.

    Article  Google Scholar 

  9. Hiatt WR, Armstrong EJ, Larson CJ, Brass EP. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease. Circ Res. 2015;116:1527–39.

    CAS  PubMed  Article  Google Scholar 

  10. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368:2004–13.

    CAS  PubMed  Article  Google Scholar 

  11. Lin CH, Hsia K, Tsai CH, Ma H, Lu JH, Tsay RY. Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering. Biomed Mater. 2019;14:045014.

    CAS  PubMed  Google Scholar 

  12. Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E. Stem cell sources and graft material for vascular tissue engineering. Stem Cell Rev Rep. 2018;14:642–67.

    CAS  PubMed  Article  Google Scholar 

  13. Carrabba M, Madeddu P. Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol. 2018;6:41.

    Article  Google Scholar 

  14. Muangsanit P, Shipley RJ, Phillips JB. Vascularization strategies for peripheral nerve tissue engineering. Anat Rec (Hoboken). 2018;301:1657–67.

    Article  Google Scholar 

  15. Herrmann FEM, Lamm P, Wellmann P, Milz S, Hagl C, Juchem G. Autologous endothelialized vein allografts in coronary artery bypass surgery—long term results. Biomaterials. 2019;212:87–97.

    CAS  PubMed  Article  Google Scholar 

  16. Mahara A, Sakuma T, Mihashi N, Moritan T, Yamaoka T. Accelerated endothelialization and suppressed thrombus formation of acellular vascular grafts by modifying with neointima-inducing peptide: a time-dependent analysis of graft patency in rat-abdominal transplantation model. Colloids Surf B Biointerfaces. 2019;18:806–13.

    CAS  Article  Google Scholar 

  17. Ilanlou S, Khakbiz M, Amoabediny G, Mohammadi J. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue Cell. 2019;60:25–32.

    CAS  PubMed  Article  Google Scholar 

  18. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y, Ali F. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology. 2016;24:1–10.

    CAS  PubMed  Article  Google Scholar 

  19. Du J, Chen X, Liang X, Zhang G, Xu J, He L, et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci U S A. 2011;108:9466–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Jun HW, Taite LJ, West JL. Nitric oxide-producing polyurethanes. Biomacromolecules. 2005;6:838–44.

    CAS  PubMed  Article  Google Scholar 

  21. Zhu AP, Ming Z, Jian S. Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft. Appl Surf Sci. 2005;241:485–92.

    CAS  Article  Google Scholar 

  22. Li J, Lin F, Li L, Li J, Liu S. Surface engineering of poly(ethylene terephthalate) for durable hemocompatibility via a surface interpenetrating network technique. Macromol Chem Phys. 2012;213:2120–9.

    CAS  Article  Google Scholar 

  23. Williamson MR, Black R, Kielty C. PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials. 2006;27:3608–16.

    CAS  PubMed  Article  Google Scholar 

  24. Shin YM, Lee YB, Kim SJ, Kang JK, Park JC, Jang W, et al. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules. 2012;13:2020–8.

    CAS  PubMed  Article  Google Scholar 

  25. Bai H, Dardik A, Xing Y. Decellularized carotid artery functions as an arteriovenous graft. J Surg Res. 2019;234:33–9.

    PubMed  Article  Google Scholar 

  26. Zhou M, Liu Z, Liu C, Jiang X, Wei Z, Qiao W, et al. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds. J Biomed Mater Res B Appl Biomater. 2012;100:111–20.

    Article  CAS  Google Scholar 

  27. Bai H, Wang Z, Li M, Liu Y, Wang W, Sun P, et al. Hyaluronic acid–heparin conjugated decellularized human great saphenous vein patches decrease neointimal thickness. J Biomed Mater Res B Appl Biomater. 2020;108:2417–25.

    CAS  Article  Google Scholar 

  28. Ji Y, Zhou J, Sun T, Tang K, Xiong Z, Ren Z, et al. Diverse preparation methods for small intestinal submucosa (SIS): decellularization, components, and structure. J Biomed Mater Res A. 2019;107:689–97.

    CAS  Google Scholar 

  29. Zhao P, Li X, Fang Q, Wang F, Ao Q, Wang X, et al. Surface modification of small intestine submucosa in tissue engineering. Regen Biomater. 2020;7:339–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Peng G, Yao D, Niu Y, Liu H, Fan Y. Surface modification of multiple bioactive peptides to improve endothelialization of vascular grafts. Macromol Biosci. 2019;19:e1800368.

    PubMed  Article  CAS  Google Scholar 

  31. Chen JP, Su CH. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011;7:234–43.

    CAS  Article  PubMed  Google Scholar 

  32. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008;2008:pdb.prot4986.

  33. Garvey W. Modified elastic tissue-Masson trichrome stain. Stain Technol. 1984;59:213–6.

    CAS  PubMed  Article  Google Scholar 

  34. Yamada K. An acriflavine alcian blue technique for dual staining of cartilage and mast cells in paraffin sections. Yamada Laboratory of Histology, Department of Anatomy School of Medicine, Nagoya Received for Publication November. Acta Histochem Cytochem. 1970;3:1–6.

  35. Tardalkar K, Desai S, Adnaik A, Bohara R, Joshi M. Novel approach toward the generation of tissue engineered heart valve by using combination of antioxidant and detergent: a potential therapy in cardiovascular tissue engineering. Tissue Eng Regen Med. 2017;14:755–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40:146–53.

    PubMed  Article  Google Scholar 

  37. Kong X, Kong C, Wen S, Shi J. The use of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft. J Biomed Mater Res B Appl Biomater. 2019;107:672–9.

    CAS  Article  Google Scholar 

  38. Nakagawa T, Ohnishi K, Kosaki Y, Saito Y, Horlad H, Fujiwara Y, et al. Optimum immunohistochemical procedures for analysis of macrophages in human and mouse formalin fixed paraffin-embedded tissue samples. J Clin Exp Hematop. 2017;57:31–6.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Zha XM, et al. Synthesis of silk fibroin-insulin bioconjugates and their characterization and activities in vivo. J Biomed Mater Res B Appl Biomater. 2006;79:275–83.

    Article  CAS  Google Scholar 

  40. Narayan J, Kumar P, Gupta A, Tiwari S. To compare the blood pressure and heart rate during course of various types of anesthesia in wistar rat: a novel experiences. Asian J Med Sci. 2018;9:37–9.

    Article  Google Scholar 

  41. Hira VVV, de Jong AL, Ferro K, Khurshed M, Molenaar RJ, Van Noorden CJF. Comparison of different methodologies and cryostat versus paraffin sections for chromogenic immunohistochemistry. Acta Histochem. 2019;121:125–34.

    CAS  PubMed  Article  Google Scholar 

  42. Charles R. Baseline hematology and clinical chemistry values for Charles River Wistar rats (CRL (W) BR) as a function of sex and age. Charles River Technical Bulletin. 1982;1:1–4.

  43. Cheng J, Li J, Cai Z, Xing Y, Wang C, Guo L, et al. Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulfate. Int J Artif Organs. 2021;44:497–508.

    Google Scholar 

  44. Li N, Li Y, Gong D, Xia C, Liu X, Xu Z. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interact Cardiovasc Thorac Surg. 2018;26:768–76.

    PubMed  Article  Google Scholar 

  45. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37.

    Article  Google Scholar 

  46. Guler S, Aydin HM, Lü LX, Yang Y. Improvement of decellularization efficiency of porcine aorta using dimethyl sulfoxide as a penetration enhancer. Artif Organs. 2018;42:219–30.

    CAS  PubMed  Article  Google Scholar 

  47. Schneider KH, Rohringer S, Kapeller B, Grasl C, Kiss H, Heber S, et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58.

    CAS  PubMed  Article  Google Scholar 

  48. Liu J, Li B, Jing H, Wu Y, Kong D, Leng X, et al. Swim bladder as a novel biomaterial for cardiovascular materials with anti-calcification properties. Adv Healthc Mater. 2020;9:e1901154.

    Article  CAS  Google Scholar 

  49. Li YY, Choy TH, Ho FC, Chan PB. Scaffold composition affects cytoskeleton organization, cell – matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation. Biomaterials. 2018;52:208–20.

    CAS  Article  Google Scholar 

  50. Li Q, Chang Z, Oliveira G, Xiong M, Smith LM, Frey BL, et al. Biomaterials Protein turnover during in vitro tissue engineering. Biomaterials. 2016;81:104–13.

    CAS  PubMed  Article  Google Scholar 

  51. Tong Z, Xu Z, Tong Y, Qi L, Guo L, Guo J, et al. Effectiveness of distal arterial bypass with porcine decellularized vascular graft for treating diabetic lower limb ischemia. Int J Artif Organs. 2021;44:580–6.

    CAS  Article  Google Scholar 

  52. Voorhees AB Jr, Jaretzki A 3rd, Blakemore AH. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann Surg. 1952;135:332–6.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Jiang B, Suen R, Wang JJ, Zhang ZJ, Wertheim JA, Ameer GA. Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials. 2017;144:166–75.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Jeong Y, Yao Y, Yim EKF. Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts. Biomater Sci. 2020;8:4383–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Lopera Higuita M, Griffiths LG. Small diameter xenogeneic extracellular matrix scaffolds for vascular applications. Tissue Eng Part B Rev. 2020;26:26–45.

    Article  Google Scholar 

  56. Stowell CET, Wang Y. Quickening: translational design of resorbable synthetic vascular grafts. Biomaterials. 2018;173:71–86.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Skovrind I, Harvald EB, Juul Belling H, Jørgensen CD, Lindholt JS, Andersen DC. Concise review: patency of small-diameter tissue-engineered vascular grafts: a meta-analysis of preclinical trials. Stem Cells Transl Med. 2019;8:671–80.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015;44:5680–742.

    CAS  PubMed  Article  Google Scholar 

  59. Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, et al. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater. 2021;6:2557–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Wang M, Bao L, Qiu X, Yang X, Liu S, Su Y, et al. Immobilization of heparin on decellularized kidney scaffold to construct microenvironment for antithrombosis and inducing reendothelialization. Sci China Life Sci. 2018;61:1168–77.

    CAS  PubMed  Article  Google Scholar 

  61. Aslani S, Kabiri M, HosseinZadeh S, Hanaee-Ahvaz H, Taherzadeh ES, Soleimani M. The applications of heparin in vascular tissue engineering. Microvasc Res. 2020;131:104027.

    CAS  PubMed  Article  Google Scholar 

  62. Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25:90.

    Article  CAS  Google Scholar 

  63. Yu C, Yang H, Wang L, Thomson JA, Turng LS, Guan G. Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. Mater Sci Eng C Mater Biol Appl. 2021;128:112301.

    CAS  Article  Google Scholar 

  64. Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y, et al. Hybrid small-diameter vascular grafts: anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials. 2015;76:359–70.

    PubMed  Article  CAS  Google Scholar 

  65. Zhu T, Gu H, Zhang H, Wang H, Xia H, Mo X, et al. Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomater. 2021;119:211–24.

    CAS  PubMed  Article  Google Scholar 

  66. Hsia K, Lin CH, Lee HY, Chen WM, Yao CL, Chen CC, et al. Sphingosine-1-phosphate in endothelial cell recellularization improves patency and endothelialization of decellularized vascular grafts in vivo. Int J Mol Sci. 2019;20:1641.

    CAS  PubMed Central  Article  Google Scholar 

  67. Lu X, Han L, Kassab GS. In vivo self-assembly of small diameter pulmonary visceral pleura artery graft. Acta Biomater. 2019;83:265–76.

    CAS  Article  PubMed  Google Scholar 

  68. Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Transl Med. 2019;11:eaau6934.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yamanaka H, Yamaoka T, Mahara A, Morimoto N, Suzuki S. Tissue-engineered submillimeter-diameter vascular grafts for free flap survival in rat model. Biomaterials. 2018;179:156–63.

    CAS  PubMed  Article  Google Scholar 

  70. Zanetta L, Marcus SG, Vasile J, Dobryansky M, Cohen H, Eng K, et al. Expression of von Willebrand factor, an endothelial cell marker, is up- regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer. 2000;85:281–8.

    CAS  PubMed  Article  Google Scholar 

  71. Sun KH, Chang Y, Reed NI, Sheppard D. α-smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016;310:L824–36.

    PubMed  PubMed Central  Article  Google Scholar 

  72. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, et al. α-Smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem. 1989;37:315–21.

    CAS  PubMed  Article  Google Scholar 

  73. Murukesh N, Dive C, Jayson GC. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer. 2010;102:8–18.

    CAS  Article  PubMed  Google Scholar 

  74. Kung CT, Su CM, Chang HW, Cheng HH, Hsiao SY, Tsai TC, et al. Serum adhesion molecules as outcome predictors in adult severe sepsis patients requiring mechanical ventilation in the emergency department. Clin Biochem. 2014;47:38–43.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Botany, Shivaji University, Kolhapur for extending SEM facility. Dr. Meghnad G. Joshi acknowledges the research funding support from the Department of Science and Technology (DST), Govt. of India (SB/SO/HS/0198/2013) and D.Y. Patil Education Society Deemed University (DYPES/DU/R&D/3104). M. J. conceived the study and designed the experiments. K.T., T.M., N.B., L.C. performed the experiments. M.J. reviewed, M.J., J.K. analysed and interpreted the data. M. J. and K. T. wrote the manuscript. All authors contributed to the analysis of the data and discussed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghnad G. Joshi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical statement

The animal studies were performed after receiving approval Institutional Animal Ethical Committee (IAEC). D Y Patil Education Society,(Deemed Universty) Kolhapur, India. (Approval No: Item No.04 - Sub-item 7).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tardalkar, K., Marsale, T., Bhamare, N. et al. Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization. Tissue Eng Regen Med 19, 505–523 (2022). https://doi.org/10.1007/s13770-021-00411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00411-7

Keywords

  • Xenogeneic
  • Vascular graft
  • Decellularization
  • Small diameter vessels
  • Heparin surface modification