Skip to main content

Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments

Abstract

Cancer is one of the major diseases that threaten human life worldwide. Despite advances in cancer treatment techniques, such as radiation therapy, chemotherapy, targeted therapy, and immunotherapy, it is still difficult to cure cancer because of the resistance mechanism of cancer cells. Current understanding of tumor biology has revealed that resistance to these anticancer therapies is due to the tumor microenvironment (TME) represented by hypoxia, acidity, dense extracellular matrix, and immunosuppression. This review demonstrates the latest strategies for effective cancer treatment using functional nanoparticles that can modulate the TME. Indeed, preclinical studies have shown that functional nanoparticles can effectively modulate the TME to treat refractory cancer. This strategy of using TMEs with controllable functional nanoparticles is expected to maximize cancer treatment efficiency in the future by combining it with various modern cancer therapeutics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Jung KW, Won YJ, Kong HJ, Lee ES. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2016. Cancer Res Treat. 2019;51:417–30.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5:166.

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Yang S, Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res. 2017;126:97–108.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Liu J, Chen Q, Feng L, Liu Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today. 2018;21:55–73.

    CAS  Article  Google Scholar 

  11. 11.

    Wingelaar TT, van Ooij PAM, Brinkman P, van Hulst RA. Pulmonary oxygen toxicity in navy divers: a crossover study using exhaled breath analysis after a one-hour air or oxygen dive at nine meters of sea water. Front Physiol. 2019;10:10.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Liu J, Tian L, Zhang R, Dong Z, Wang H, Liu Z. Collagenase-encapsulated pH-responsive nanoscale coordination polymers for tumor microenvironment modulation and enhanced photodynamic nanomedicine. ACS Appl Mater Interfaces. 2018;10:43493–502.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63:131–5.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Xu J, Shi R, Chen G, Dong S, Yang P, Zhang Z, et al. All-in-one theranostic nanomedicine with ultrabright second near-infrared emission for tumor-modulated bioimaging and chemodynamic/photodynamic therapy. ACS Nano. 2020;14:9613–25.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185–98.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  18. 18.

    Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986;31:288–305.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Chung CH, Lu KY, Lee WC, Hsu WJ, Lee WF, Dai JZ, et al. Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials. 2020;257:120227.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Zhang Y, Ho SH, Li B, Nie G, Li S. Modulating the tumor microenvironment with new therapeutic nanoparticles: a promising paradigm for tumor treatment. Med Res Rev. 2020;40:1084–102.

    PubMed  Article  Google Scholar 

  22. 22.

    Tan T, Hu H, Wang H, Li J, Wang Z, Wang J, et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun. 2019;10:3322.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Tian H, Luo Z, Liu L, Zheng M, Chen Z, Ma A, et al. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv Funct Mater. 2017;27:1703197.

    Article  CAS  Google Scholar 

  24. 24.

    Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, et al. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater. 2017;29:1701429.

    Article  CAS  Google Scholar 

  25. 25.

    Zhu W, Dong Z, Fu T, Liu J, Chen Q, Li Y, et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv Funct Mater. 2016;26:5490–8.

    CAS  Article  Google Scholar 

  26. 26.

    Abumanhal-Masarweh H, Koren L, Zinger A, Yaari Z, Krinsky N, Kaneti G, et al. Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. J Control Release. 2019;296:1–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Som A, Raliya R, Tian L, Akers W, Ippolito JE, Singamaneni S, et al. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale. 2016;8:12639–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Zhang YX, Zhao YY, Shen J, Sun X, Liu Y, Liu H, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 2019;19:2774–83.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Zinger A, Koren L, Adir O, Poley M, Alyan M, Yaari Z, et al. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano. 2019;13:11008–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Wang H, Han X, Dong Z, Xu J, Wang J, Liu Z. Hyaluronidase with pH-responsive dextran modification as an adjuvant nanomedicine for enhanced photodynamic-immunotherapy of cancer. Adv Funct Mater. 2019;29:1902440.

    Article  CAS  Google Scholar 

  31. 31.

    Lee S, Han H, Koo H, Na JH, Yoon HY, Lee KE, et al. Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound. J Control Release. 2017;263:68–78.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Shan H, Dou W, Zhang Y, Qi M. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale. 2020;12:22268–80.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Wan D, Yang Y, Liu Y, Cun X, Li M, Xu S, et al. Sequential depletion of myeloid-derived suppressor cells and tumor cells with a dual-pH-sensitive conjugated micelle system for cancer chemoimmunotherapy. J Control Release. 2020;317:43–56.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Zhang X, Wang C, Wang J, Hu Q, Langworthy B, Ye Y, et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv Mater. 2018;30:e1707112.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49:6449–65.

    CAS  PubMed  Google Scholar 

  36. 36.

    Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, et al. Hypoxia-targeted drug delivery. Chem Soc Rev. 2019;48:771–813.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Fu C, Duan X, Cao M, Jiang S, Ban X, Guo N, et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv Healthc Mater. 2019;8:e1900047.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Liu Y, Jiang Y, Zhang M, Tang Z, He M, Bu W. Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Acc Chem Res. 2018;51:2502–11.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Wingelaar TT, van Ooij PAM, van Hulst RA. Oxygen toxicity and special operations forces diving: hidden and dangerous. Front Physiol. 2017;8:1263.

    Article  Google Scholar 

  40. 40.

    Wang Y, Wu W, Mao D, Teh C, Wang B, Liu B. Metal–organic framework assisted and tumor microenvironment modulated synergistic image-guided photo-chemo therapy. Adv Funct Mater. 2020;30:2002431.

    CAS  Article  Google Scholar 

  41. 41.

    Revuri V, Cherukula K, Nafiujjaman M, Vijayan V, Jeong YY, Park IK, et al. In situ oxygenic nanopods targeting tumor adaption to hypoxia potentiate image-guided photothermal therapy. ACS Appl Mater Interfaces. 2019;11:19782–92.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Chen J, Ding Z, Peng Y, Pan F, Li J, Zou L, et al. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein. PLoS One. 2014;9:e98882.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif Organs. 2010;34:622–34.

    PubMed  Google Scholar 

  44. 44.

    Liu J, Zhang W, Kumar A, Rong X, Yang W, Chen H, et al. Acridine orange encapsulated mesoporous manganese dioxide nanoparticles to enhance radiotherapy. Bioconjugate Chem. 2020;31:82–92.

    CAS  Article  Google Scholar 

  45. 45.

    Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev. 2018;5:269–86.

    CAS  Article  Google Scholar 

  46. 46.

    Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Park W, Chen J, Cho S, Park SJ, Larson AC, Na K, et al. Acidic pH-triggered drug-eluting nanocomposites for magnetic resonance imaging-monitored intra-arterial drug delivery to hepatocellular carcinoma. ACS Appl Mater Interfaces. 2016;8:12711–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Lin G, Chen S, Mi P. Nanoparticles targeting and remodeling tumor microenvironment for cancer theranostics. J Biomed Nanotechnol. 2018;14:1189–207.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8:2032–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics: I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66:1207–18.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Ihraiz WG, Ahram M, Bardaweel SK. Proton pump inhibitors enhance chemosensitivity, promote apoptosis, and suppress migration of breast cancer cells. Acta Pharm. 2020;70:179–90.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Faes S, Dormond O. Systemic buffers in cancer therapy: the example of sodium bicarbonate; stupid idea or wise remedy? Med Chem. 2015;5:540–4.

    Article  CAS  Google Scholar 

  53. 53.

    Silva AS, Yunes JA, Gillies RJ, Gatenby RA. The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res. 2009;69:2677–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Som A, Raliya R, Paranandi K, High RA, Reed N, Beeman SC, et al. Calcium carbonate nanoparticles stimulate tumor metabolic reprogramming and modulate tumor metastasis. Nanomedicine (Lond). 2019;14:169–82.

    CAS  Article  Google Scholar 

  55. 55.

    Zhang Y, Cai L, Li D, Lao YH, Liu D, Li M, et al. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res. 2018;11:4806–22.

    CAS  Article  Google Scholar 

  56. 56.

    Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol. 2017;43:74–89.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72:2746–56.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Yang X, Lu Y, Hang J, Zhang J, Zhang T, Huo Y, et al. Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol Res. 2020;8:1440–51.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230:350–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24:657–71.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Giussani M, Triulzi T, Sozzi G, Tagliabue E. Tumor extracellular matrix remodeling: new perspectives as a circulating tool in the diagnosis and prognosis of solid tumors. Cells. 2019;8:81.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  62. 62.

    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey. Dev Cell. 2019;49:332–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;60:2497–503.

    CAS  PubMed  Google Scholar 

  66. 66.

    Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD. Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov. 2011;1:291–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Diener B, Carrick L Jr, Berk RS. In vivo studies with collagenase from Pseudomonas aeruginosa. Infect Immun. 1973;7:212–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Villegas MR, Baeza A, Vallet-Regí M. Hybrid collagenase nanocapsules for enhanced nanocarrier penetration in tumoral tissues. ACS Appl Mater Interfaces. 2015;7:24075–81.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Chen E, Han S, Song B, Xu L, Yuan H, Liang M, et al. Mechanism investigation of hyaluronidase-combined multistage nanoparticles for solid tumor penetration and antitumor effect. Int J Nanomedicine 2020;15:6311–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Guan X, Chen J, Hu Y, Lin L, Sun P, Tian H, et al. Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials. 2018;171:198–206.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Mardhian DF, Storm G, Bansal R, Prakash J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J Control Release. 2018;290:1–10.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev. 2021;121:1746–803.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer. 2020;6:605–18.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, et al. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics. 2019;9:126–151.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Saeed M, Gao J, Shi Y, Lammers T, Yu H. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics. 2019;9:7981–8000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399–416.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 2019;79:795–806.

    CAS  PubMed  Google Scholar 

  78. 78.

    Galván-Peña S, O’Neill LA. Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:420.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Sylvestre M, Crane CA, Pun SH. Progress on modulating tumor-associated macrophages with biomaterials. Adv Mater. 2020;32:e1902007.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Gionfriddo G, Plastina P, Augimeri G, Catalano S, Giordano C, Barone I, et al. Modulating tumor-associated macrophage polarization by synthetic and natural PPARγ ligands as a potential target in breast cancer. Cells. 2020;9:174.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  82. 82.

    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5:3–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Park W, Heo YJ, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res. 2018;22:1–10.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 2018;172:825–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Taylor NA, Vick SC, Iglesia MD, Brickey WJ, Midkiff BR, McKinnon KP, et al. Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. J Clin Invest. 2017;127:3472–83.

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Ou W, Thapa RK, Jiang L, Soe ZC, Gautam M, Chang J-H, et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J Control Release. 2018;281:84–96.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura H, Takeuchi Y, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21:1346–58.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Tang J, Yu JX, Hubbard-Lucey VM, Neftelinov ST, Hodge JP, Lin Y. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat Rev Drug Discov. 2018;17:854–5.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang Y. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;32:317.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (MSIT), Republic of Korea (2021R1A2C4001776, 2020H1D3A1A04105814, and 2020M2D9A3094208), the Korea Medical Device Development Fund grant funded by the Korean government (MSIT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, Ministry of Food and Drug Safety) (202012D21-02), and the Catholic University of Korea, Research Fund, 2020.

Author information

Affiliations

Authors

Contributions

SS and JL collected data and evidence. SS and JH drew the figures. FL, DL, and WP formulated the study concept and design. SS, JL, and WP wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wooram Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Lee, J., Han, J. et al. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med (2021). https://doi.org/10.1007/s13770-021-00403-7

Download citation

Keywords

  • Tumor microenvironment
  • Nanoparticles
  • Cancer treatments
  • Drug delivery
  • Biomaterials