Skip to main content
Log in

Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy

Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Cancer immunotherapy has become the new paradigm of cancer treatment. The introduction and discovery of various therapeutic agents have also accelerated the application of immunotherapy in clinical trials. However, despite the significant potency and demonstrated advantages of cancer immunotherapy, its clinical application to patients faces several safety and efficacy issues, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome-related issues. In addressing these problems, biomaterials traditionally used for tissue engineering and drug delivery are attracting attention. Among them, hydrogels can be easily injected into tumors with drugs, and they can minimize side effects by retaining immune therapeutics at the tumor site for a long time. This article reviews the status of functional hydrogels for effective cancer immunotherapy. First, we describe the basic mechanisms of cancer immunotherapy and the advantages of using hydrogels to apply these mechanisms. Next, we summarize recent advances in the development of functional hydrogels designed to locally release various immunotherapeutic agents, including cytokines, cancer immune vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells. Finally, we briefly discuss the current problems and possible prospects of hydrogels for effective cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

adapted from Ref [4]; Open Access. Modified by Hee Seung Seo)

Fig. 2

Copyright 2017 Elsevier B.V. All rights reserved)

Fig. 3

Reproduced from Ref. [62]; with permission from The Royal Society of Chemistry)

Fig. 4

Copyright 2021 Elsevier and 2021 American Chemical Society, respectively)

Fig. 5

Copyright 2020 Elsevier Ltd. and 2021 American Chemical Society, respectively)

Fig. 6

Copyright 2020 American Chemical Society)

Fig. 7
Fig. 8

Copyright 2020 American Chemical Society)

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  3. Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;1:1–4.

    PubMed  Google Scholar 

  4. Park W, Heo Y-J, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res. 2018;22:24.

    PubMed  PubMed Central  Google Scholar 

  5. Zhao Z, Zheng L, Chen W, Weng W, Song J, Ji J. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol. 2019;12:126.

    PubMed  PubMed Central  Google Scholar 

  6. Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood. 1986;68:493–7.

    CAS  PubMed  Google Scholar 

  7. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    CAS  PubMed  Google Scholar 

  9. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC. Antiproliferative properties of type I and type II interferon. Pharmaceuticals (Basel). 2010;3:994–1015.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dummer R, Urosevic M, Kempf W, Hoek K, Hafner J, Burg G. Imiquimod in basal cell carcinoma: how does it work? Br J Dermatol. 2003;149 Suppl 66:57–8.

    CAS  PubMed  Google Scholar 

  12. Schmidinger M, Hejna M, Zielinski CC. Aldesleukin in advanced renal cell carcinoma. Expert Rev Anticancer Ther. 2004;4:957–80.

    CAS  PubMed  Google Scholar 

  13. Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim DW, Algazi A, Johnson DB, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature. 2018;553:347–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58.

    CAS  PubMed  Google Scholar 

  15. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    PubMed  PubMed Central  Google Scholar 

  19. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.

    PubMed  PubMed Central  Google Scholar 

  20. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers. 2011;3:3856–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev. 2017;114:79–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maleki Vareki S, Garrigós C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol. 2017;116:116–24.

    PubMed  Google Scholar 

  23. Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell. 2019;35:238–55.e6.

    Google Scholar 

  24. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa0984.

    PubMed  PubMed Central  Google Scholar 

  25. Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, McArthur JG, et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer. 2017;5:22.

    PubMed  PubMed Central  Google Scholar 

  26. Devarasetty M, Forsythe SD, Shelkey E, Soker S. In vitro modeling of the tumor microenvironment in tumor organoids. Tissue Eng Regen Med. 2020;17:759–71.

    PubMed  PubMed Central  Google Scholar 

  27. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung SW, Oh SH, Lee IS, Byun JH, Lee JH. In situ gelling hydrogel with anti-bacterial activity and bone healing property for treatment of osteomyelitis. Tissue Eng Regen Med. 2019;16:479–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    PubMed  Google Scholar 

  30. Santoni M, Cascinu S, Mills CD. Altering macrophage polarization in the tumor environment: the role of response gene to complement 32. Cell Mol Immunol. 2015;12:783–4.

    CAS  PubMed  Google Scholar 

  31. Weigert A, Brüne B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide. 2008;19:95–102.

    Google Scholar 

  32. Ruff M, Schiffmann E, Terranova V, Pert CB. Neuropeptides are chemoattractants for human tumor cells and monocytes: a possible mechanism for metastasis. Clin Immunol Immunopathol. 1985;37:387–96.

    CAS  PubMed  Google Scholar 

  33. Nesbit M, Schaider H, Miller TH, Herlyn M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol. 2001;166:6483–90.

    CAS  PubMed  Google Scholar 

  34. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25:315–22.

    PubMed  Google Scholar 

  35. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94:25–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mocellin S, Nitti D. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochim Biophys Acta. 2013;1836:187–96.

    CAS  PubMed  Google Scholar 

  38. Ostrand-Rosenberg S. Tolerance and immune suppression in the tumor microenvironment. Cell Immunol. 2016;299:23–9.

    CAS  PubMed  Google Scholar 

  39. Chen WW, Razak ARA, Bedard PL, Siu LL, Hansen AR. A systematic review of immune-related adverse event (irAE) reporting in clinical trials of immune checkpoint inhibitors (ICIs). J Clin Oncol. 2014;32:3057.

    Google Scholar 

  40. Gao J, He Q, Subudhi S, Aparicio A, Zurita-Saavedra A, Lee DH, et al. Review of immune-related adverse events in prostate cancer patients treated with ipilimumab: MD Anderson experience. Oncogene. 2015;34:5411–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48.

    CAS  PubMed  Google Scholar 

  42. Weiden J, Tel J, Figdor CG. Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol. 2018;18:212–9.

    CAS  PubMed  Google Scholar 

  43. Fransen MF, Arens R, Melief CJ. Local targets for immune therapy to cancer: tumor draining lymph nodes and tumor microenvironment. Int J Cancer. 2013;132:1971–6.

    CAS  PubMed  Google Scholar 

  44. Hori Y, Winans AM, Huang CC, Horrigan EM, Irvine DJ. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials. 2008;29:3671–82.

    CAS  PubMed  Google Scholar 

  45. Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci. 2009;71:242–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol. 2015;36:124–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun T, Yang Y, Luo X, Cheng Y, Zhang M, Wang K, et al. Inhibition of tumor angiogenesis by interferon-gamma by suppression of tumor-associated macrophage differentiation. Oncol Res. 2014;21:227–35.

    CAS  PubMed  Google Scholar 

  48. He T, Tang C, Xu S, Moyana T, Xiang J. Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and anti-tumor immunity. Cell Mol Immunol. 2007;4:105–11.

    CAS  PubMed  Google Scholar 

  49. Müller L, Aigner P, Stoiber D. Type I interferons and natural killer cell regulation in cancer. Front Immunol. 2017;8:304.

    PubMed  PubMed Central  Google Scholar 

  50. Enomoto H, Tao L, Eguchi R, Sato A, Honda M, Kaneko S, et al. The in vivo anti-tumor effects of type I-interferon against hepatocellular carcinoma: the suppression of tumor cell growth and angiogenesis. Sci Rep. 2017;7:12189.

    PubMed  PubMed Central  Google Scholar 

  51. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36:346–51.

    CAS  PubMed  Google Scholar 

  52. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A. 2009;106:7119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cox MA, Harrington LE, Zajac AJ. Cytokines and the inception of CD8 T cell responses. Trends Immunol. 2011;32:180–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ross SH, Cantrell DA. Signaling and function of Interleukin-2 in T lymphocytes. Annu Rev Immunol. 2018;36:411–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yan WL, Shen KY, Tien CY, Chen YA, Liu SJ. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy. 2017;9:347–60.

    CAS  PubMed  Google Scholar 

  56. Huang H, Qi X, Chen Y, Wu Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J. 2019;27:990–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lv Q, He C, Quan F, Yu S, Chen X. DOX/IL-2/IFN-gamma co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioact Mater. 2018;3:118–28.

    PubMed  Google Scholar 

  58. Wu X, Wu Y, Ye H, Yu S, He C, Chen X. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J Control Release. 2017;255:81–93.

    CAS  PubMed  Google Scholar 

  59. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    CAS  PubMed  Google Scholar 

  60. Tian B, Hua S, Tian Y, Liu J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B. 2020;8:10050–64.

    CAS  PubMed  Google Scholar 

  61. Seo SH, Han HD, Noh KH, Kim TW, Son SW. Chitosan hydrogel containing GMCSF and a cancer drug exerts synergistic anti-tumor effects via the induction of CD8+ T cell-mediated anti-tumor immunity. Clin Exp Metastasis. 2009;26:179–87.

    CAS  PubMed  Google Scholar 

  62. Wang C, Yu Y, Chen H, Zhang S, Wang J, Liu C. Construction of cytokine reservoirs based on sulfated chitosan hydrogels for the capturing of VEGF in situ. J Mater Chem B. 2019;7:1882–92.

    CAS  PubMed  Google Scholar 

  63. Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7:283ra52.

    PubMed  PubMed Central  Google Scholar 

  64. Chi H, Li C, Zhao FS, Zhang L, Ng TB, Jin G, et al. Anti-tumor activity of toll-like receptor 7 agonists. Front Pharmacol. 2017;8:304.

    PubMed  PubMed Central  Google Scholar 

  65. Park CG, Hartl CA, Schmid D, Carmona EM, Kim HJ, Goldberg MS. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. 2018;10:eaar1916.

    PubMed  Google Scholar 

  66. Wang F, Su H, Xu D, Dai W, Zhang W, Wang Z, et al. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat Biomed Eng. 2020;4:1090–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ali OA, Emerich D, Dranoff G, Mooney DJ. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci Transl Med. 2009;1:8ra19.

    PubMed  PubMed Central  Google Scholar 

  68. Berzofsky JA, Terabe M, Trepel JB, Pastan I, Stroncek DF, Morris JC, et al. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother. 2018;67:1863–9.

    CAS  PubMed  Google Scholar 

  69. Thomas S, Prendergast GC. Cancer vaccines: a brief overview. Methods Mol Biol. 2016;1403:755–61.

    PubMed  Google Scholar 

  70. Shim G, Park J, Kim MG, Yang G, Lee Y, Oh YK. Noncovalent tethering of nucleic acid aptamer on DNA nanostructure for targeted photo/chemo/gene therapies. Nanomedicine. 2020;24:102053.

    CAS  PubMed  Google Scholar 

  71. Wu Y, Li Q, Shim G, Oh YK. Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J Control Release. 2021;330:540–53.

    CAS  PubMed  Google Scholar 

  72. Wen Z, Liu F, Chen Q, Xu Y, Li H, Sun S. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomater Sci. 2019;7:4414–43.

    CAS  PubMed  Google Scholar 

  73. Miao L, Li L, Huang Y, Delcassian D, Chahal J, Han J, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat Biotechnol. 2019;37:1174–85.

    CAS  PubMed  Google Scholar 

  74. Han X, Mitchell MJ, Nie G. Nanomaterials for therapeutic RNA delivery. Matter. 2020;3:1948–75.

    Google Scholar 

  75. Yin Y, Li X, Ma H, Zhang J, Yu D, Zhao R, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21:2224–31.

    CAS  PubMed  Google Scholar 

  76. Cerullo V, Vähä-Koskela M, Hemminki A. Oncolytic adenoviruses: a potent form of tumor immunovirotherapy. Oncoimmunology. 2012;1:979–81.

    PubMed  PubMed Central  Google Scholar 

  77. Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol. 2016;21:9–15.

    PubMed  Google Scholar 

  78. Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, et al. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol. 2019;234:8636–46.

    CAS  PubMed  Google Scholar 

  79. Yu X, Guo C, Yi H, Qian J, Fisher PB, Subjeck JR, et al. A Multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity. Cancer Res. 2013;73:2093–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang J, Guo C, Wang XY, Yang H. “Double-punch” strategy for delivery of viral immunotherapy with prolonged tumor retention and enhanced transfection efficacy. J Control Release. 2021;329:328–36.

    CAS  PubMed  Google Scholar 

  81. Ullenhag GJ, Frödin JE, Strigård K, Mellstedt H, Magnusson CG. Induction of IgG subclass responses in colorectal carcinoma patients vaccinated with recombinant carcinoembryonic antigen. Cancer Res. 2002;62:1364–9.

    CAS  PubMed  Google Scholar 

  82. Zhang C, Wang B, Wang M. GM-CSF and IL-2 as adjuvant enhance the immune effect of protein vaccine against foot-and-mouth disease. Virol J. 2011;8:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Noh KH, Park YM, Kim HS, Kang TH, Song KH, Lee YH, et al. GM-CSF-loaded chitosan hydrogel as an immunoadjuvant enhances antigen-specific immune responses with reduced toxicity. BMC Immunol. 2014;15:48.

    PubMed  PubMed Central  Google Scholar 

  84. Song H, Yang P, Huang P, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics. 2019;9:2299–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang F, Shi K, Jia Y, Hao Y, Peng J, Yuan L, et al. A biodegradable thermosensitive hydrogel vaccine for cancer immunotherapy. Appl Mater Today. 2020;19:100608.

    Google Scholar 

  86. Ye X, Liang X, Chen Q, Miao Q, Chen X, Zhang X, et al. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano. 2019;13:2956–68.

    CAS  PubMed  Google Scholar 

  87. Meng Z, Zhang Y, She J, Zhou X, Xu J, Han X, et al. Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy. Nano Lett. 2021;21:1228–37.

    CAS  PubMed  Google Scholar 

  88. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8:1069–86.

    PubMed  Google Scholar 

  89. Xia AL, Xu Y, Lu XJ. Cancer immunotherapy: challenges and clinical applications. J Med Genet. 2019;56:1–3.

    CAS  PubMed  Google Scholar 

  90. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67.

    CAS  PubMed  Google Scholar 

  91. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    PubMed  PubMed Central  Google Scholar 

  92. Zhou G, Sprengers D, Boor PPC, Doukas M, Schutz H, Mancham S, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology. 2017;153:1107–19.e10.

    CAS  PubMed  Google Scholar 

  93. MichaelR C, Chul K. Safety and efficacy of immune checkpoint inhibitor therapy in patients with HIV infection and advanced-stage cancer. JAMA Oncol. 2019;5:1049–54.

    Google Scholar 

  94. Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35:709–17.

    CAS  PubMed  Google Scholar 

  95. Sury K, Perazella MA, Shirali AC. Cardiorenal complications of immune checkpoint inhibitors. Nat Rev Nephrol. 2018;14:571–88.

    CAS  PubMed  Google Scholar 

  96. Soularue E, Lepage P, Colombel JF, Coutzac C, Faleck D, Marthey L, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018;67:2056–67.

    CAS  PubMed  Google Scholar 

  97. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16:121–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Brit J Cancer. 2018;118:9–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348:74–80.

    CAS  PubMed  Google Scholar 

  100. Chen M, Tan Y, Dong Z, Lu J, Han X, Jin Q, et al. Injectable anti-inflammatory nanofiber hydrogel to achieve systemic immunotherapy post local administration. Nano Lett. 2020;20:6763–73.

    CAS  PubMed  Google Scholar 

  101. Appel EA, del Barrio J, Loh XJ, Scherman OA. Supramolecular polymeric hydrogels. Chem Soc Rev. 2012;41:6195–214.

    CAS  PubMed  Google Scholar 

  102. Lei K, Tang L. Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomater Sci. 2019;7:733–49.

    CAS  PubMed  Google Scholar 

  103. Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, et al. Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano. 2018;12:3295–310.

    CAS  PubMed  Google Scholar 

  104. Shi Y, Wang Z, Zhang X, Xu T, Ji S, Ding D, et al. Multi-responsive supramolecular hydrogels for drug delivery. Chem Commun (Camb). 2015;51:15265–7.

    CAS  Google Scholar 

  105. Cheetham AG, Zhang P, Lin YA, Lock LL, Cui H. Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc. 2013;135:2907–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang F, Xu D, Su H, Zhang W, Sun X, Monroe MK, et al. Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker-based immunotherapy. Sci Adv. 2020;6:eaaz8985.

    PubMed  PubMed Central  Google Scholar 

  107. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science. 2010;328:1031–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen X, Song M, Zhang B, Zhang Y. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev. 2016;2016:1580967.

    PubMed  PubMed Central  Google Scholar 

  109. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed  Google Scholar 

  110. Wang C, Wang J, Zhang X, Yu S, Wen D, Hu Q, et al. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med. 2018;10:eaan3682.

    PubMed  Google Scholar 

  111. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    CAS  PubMed  Google Scholar 

  112. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44:479–96.

    CAS  PubMed  Google Scholar 

  113. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13:349–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, et al. Microenvironmental autophagy promotes tumour growth. Nature. 2017;541:417–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yu S, Wang C, Yu J, Wang J, Lu Y, Zhang Y, et al. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv Mater. 2018;30:e1801527.

    PubMed  Google Scholar 

  116. Kim J, Francis DM, Thomas SN. In situ crosslinked hydrogel depot for sustained antibody release improves immune checkpoint blockade cancer immunotherapy. Nanomaterials (Basel). 2021;11:471.

    CAS  PubMed Central  Google Scholar 

  117. Lee J, Le QV, Yang G, Oh YK. Cas9-edited immune checkpoint blockade PD-1 DNA polyaptamer hydrogel for cancer immunotherapy. Biomaterials. 2019;218:119359.

    CAS  PubMed  Google Scholar 

  118. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 2017;8:90521–31.

    PubMed  PubMed Central  Google Scholar 

  120. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4:132ra53.

    PubMed  PubMed Central  Google Scholar 

  121. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, et al. Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 2016;44:1444–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, et al. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov. 2017;7:1154–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Davila ML, Brentjens RJ. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B cell acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2016;14:802–8.

    PubMed  PubMed Central  Google Scholar 

  127. Fitzgerald JC, Weiss SL, Maude SL, Barrett DM, Lacey SF, Melenhorst JJ, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45:e124–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7:1404–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017;4:92–101.

    CAS  PubMed  Google Scholar 

  130. Migliorini D, Dietrich PY, Stupp R, Linette GP, Posey AD Jr, June CH. CAR T-cell therapies in glioblastoma: a first Look. Clin Cancer Res. 2018;24:535–40.

    CAS  PubMed  Google Scholar 

  131. Papa S, van Schalkwyk M, Maher J. Clinical evaluation of ErbB-targeted CAR T-Cells, following intracavity delivery in patients with erbb-expressing solid tumors. Methods Mol Biol. 2015;1317:365–82.

    PubMed  Google Scholar 

  132. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.

    CAS  PubMed  Google Scholar 

  133. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Luo Z, Liu Z, Liang Z, Pan J, Xu J, Dong J, et al. Injectable porous microchips with oxygen reservoirs and an immune-niche enhance the efficacy of CAR T cell therapy in solid tumors. ACS Appl Mater Interfaces. 2020;12:56712–22.

    CAS  PubMed  Google Scholar 

  136. Rodriguez-Brotons A, Bietiger W, Peronet C, Langlois A, Magisson J, Mura C, et al. Comparison of perfluorodecalin and HEMOXCell as oxygen carriers for islet oxygenation in an in vitro model of encapsulation. Tissue Eng Part A. 2016;22:1327–36.

    CAS  PubMed  Google Scholar 

  137. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 2016;8:36.

    CAS  Google Scholar 

  138. Berard M, Tough DF. Qualitative differences between naive and memory T cells. Immunology. 2002;106:127–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang K, Chen Y, Ahn S, Zheng M, Landoni E, Dotti G, et al. GD2-specific CAR T cells encapsulated in an injectable hydrogel control retinoblastoma and preserve vision. Nat Cancer. 2020;1:990–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chantada GL, Rossi J, Casco F, Fandino A, Scopinaro M, de Dávila MT, et al. An aggressive bone marrow evaluation including immunocytology with GD2 for advanced retinoblastoma. J Pediatr Hematol Oncol. 2006;28:369–73.

    PubMed  Google Scholar 

  141. Highton AJ, Kojarunchitt T, Girardin A, Hook S, Kemp RA. Chitosan hydrogel vaccine generates protective CD8 T cell memory against mouse melanoma. Immunol Cell Biol. 2015;93:634–40.

    CAS  PubMed  Google Scholar 

  142. Tsao CT, Kievit FM, Ravanpay A, Erickson AE, Jensen MC, Ellenbogen RG, et al. Thermoreversible poly (ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules. 2014;15:2656–62.

    CAS  Google Scholar 

  143. Dunn ZS, Mac J, Wang P. T cell immunotherapy enhanced by designer biomaterials. Biomaterials. 2019;217:119265.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang P, Song H, Qin Y, Huang P, Zhang C, Kong D, et al. Engineering dendritic-cell-based vaccines and PD-1 blockade in self-assembled peptide nanofibrous hydrogel to amplify antitumor T-cell immunity. Nano Lett. 2018;18:4377–85.

    CAS  PubMed  Google Scholar 

  145. Weiden J, Voerman D, Dölen Y, Das RK, van Duffelen A, Hammink R, et al. Injectable biomimetic hydrogels as tools for efficient T cell expansion and delivery. Front Immunol. 2018;9:2798.

    PubMed  PubMed Central  Google Scholar 

  146. Pérez Del Río E, Santos F, Rodriguez XR, Martínez-Miguel M, Roca-Pinilla R, Arís A, et al. CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials. 2020;259:120313.

    PubMed  Google Scholar 

  147. Flanagan K, Moroziewicz D, Kwak H, Hörig H, Kaufman HL. The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell Immunol. 2004;231:75–84.

    CAS  PubMed  Google Scholar 

  148. Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm. 2020;17:373–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Sungkyun Research Fund, Sungkyunkwan University, 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wooram Park or Chun Gwon Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no animal experiments involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H.S., Wang, CP.J., Park, W. et al. Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Eng Regen Med 19, 263–280 (2022). https://doi.org/10.1007/s13770-021-00369-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00369-6

Keywords

Navigation