Strategies to Enhance Extracellular Vesicle Production

Abstract

Extracellular vesicles (EVs) are sub-micrometer lipid vesicles secreted from parental cells with their information such as DNA, RNA, and proteins. EVs can deliver their cargo to recipient cells and regulate the signaling pathway of the recipient cells to determine their destiny. Depending on the cargo of EVs, the recipient cells can be changed into abnormal state or be relieved from diseases. Therefore, EVs has been spotlighted as emerging therapeutics in biomedical research. However, slow EV secretion rate is the major limitation for the clinical applications of EVs. EV secretion is highly environmental dependent and can be regulated by various stimulants such as chemicals, oxygen levels, pH, radiation, starvation, and culture methods. To overcome the limitation of low productivity of EVs, EV stimulation methods have been widely studied and applied to massive EV productions. Another strategy is the synthesis of artificial EVs from cells by physical methods such as nitrogen cavitation, extrusion via porous membrane, and sonication. These physical methods disrupt cellular membrane and reassemble the membrane to lipid vesicles containing proteins or drugs. In this review, we will focus on how EV generation can be enhanced and recent advances in large scale EV generation strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Adapted from ref [14]

Fig. 4

References

  1. 1.

    Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20:71–88.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118:1917–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18:1835–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Pathan M, Fonseka P, Chitti SV, Kang T, Sanwlani R, Van Deun J, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2019;47:D516–9.

    CAS  Article  Google Scholar 

  7. 7.

    Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Zipkin M. Exosome redux. Nat Biotechnol. 2019;37:1395–400.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126:1208–15.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Fitts CA, Ji N, Li Y, Tan C. Exploiting exosomes in cancer liquid biopsies and drug delivery. Adv Healthc Mater. 2019;8:1801268.

    Article  CAS  Google Scholar 

  13. 13.

    Popowski K, Lutz H, Hu S, George A, Dinh PU, Cheng K. Exosome therapeutics for lung regenerative medicine. J Extracell Vesicles. 2020;9:1785161.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018;7:1522236.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197–213.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Keerthikumar S, Gangoda L, Liem M, Fonseka P, Atukorala I, Ozcitti C, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015;6:15375.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Hessvik NP, Øverbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K, et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci. 2016;73:4717–37.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Lee HY, Chen CK, Ho CM, Lee SS, Chang CY, Chen KJ, et al. EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget. 2018;9:13193–205.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Zhang C, Xiao X, Chen M, Aldharee H, Chen Y, Long W. Liver kinase B1 restoration promotes exosome secretion and motility of lung cancer cells. Oncol Rep. 2018;39:376–82.

    CAS  PubMed  Google Scholar 

  21. 21.

    Moreno-Gonzalo O, Villarroya-Beltri C, Sánchez-Madrid F. Post-translational modifications of exosomal proteins. Front Immunol. 2014;5:383.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012;109:4146–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Putz U, Howitt J, Lackovic J, Foot N, Kumar S, Silke J, et al. Nedd4 family-interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4 family proteins. J Biol Chem. 2008;283:32621–7.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernández-Delgado I, Torralba D, Moreno-Gonzalo O, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 2011;6:e16899.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Gebremedhn S, Gad A, Aglan HS, Laurincik J, Prochazka R, Salilew-Wondim D, et al. Extracellular vesicles shuttle protective messages against heat stress in bovine granulosa cells. Sci Rep. 2020;10:15824.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Dorayappan KDP, Wanner R, Wallbillich JJ, Saini U, Zingarelli R, Suarez AA, et al. Hypoxia-induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: a novel mechanism linking STAT3/Rab proteins. Oncogene. 2018;37:3806–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110:7312–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Ban JJ, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 2015;461:76–9.

    CAS  Article  Google Scholar 

  32. 32.

    Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.

    Article  CAS  Google Scholar 

  33. 33.

    Kim WS, Choi D, Park JM, Song HY, Seo HS, Lee DE, et al. Comparison of exosomes derived from non- and gamma-irradiated melanoma cancer cells as a potential antigenic and immunogenic source for dendritic cell-based immunotherapeutic vaccine. Vaccines (Basel). 2020;8:699.

    CAS  Article  Google Scholar 

  34. 34.

    Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66:4795–801.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68:7864–71.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost. 2008;100:878–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One. 2015;10:e0138849.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Aubertin K, Silva AK, Luciani N, Espinosa A, Djemat A, Charue D, et al. Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep. 2016;6:35376.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, et al. MicroRNA-155 controls exosome synthesis and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma. Sci Rep. 2017;7:42339.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Vulpis E, Cecere F, Molfetta R, Soriani A, Fionda C, Peruzzi G, et al. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. Oncoimmunology. 2017;6:e1279372.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Ludwig N, Yerneni SS, Menshikova EV, Gillespie DG, Jackson EK, Whiteside TL. Simultaneous inhibition of glycolysis and oxidative phosphorylation triggers a multi-fold increase in secretion of exosomes: possible role of 2′, 3′-cAMP. Sci Rep. 2020;10:6948.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Montermini L, Meehan B, Garnier D, Lee WJ, Lee TH, Guha A, et al. Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content. J Biol Chem. 2015;290:24534–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano. 2018;12:9568–77.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Cobbs A, Chen X, Zhang Y, George J, Huang M, Bond V, et al. Saturated fatty acid stimulates production of extracellular vesicles by renal tubular epithelial cells. Mole Cell Biochem. 2019;458:113–24.

    CAS  Article  Google Scholar 

  45. 45.

    Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, et al. 3D cellular architecture affects MicroRNA and protein cargo of extracellular vesicles. Adv Sci. 2019;6:1800948.

    Article  CAS  Google Scholar 

  46. 46.

    Gao J, Chu D, Wang Z. Cell membrane-formed nanovesicles for disease-targeted delivery. J Control Release. 2016;224:208–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Gao J, Wang S, Wang Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials. 2017;135:62–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–710.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Mendez R, Banerjee S. Sonication-Based Basic Protocol for Liposome Synthesis. Methods Mol Biol. 2017;1609:255–60.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Thamphiwatana S, Angsantikul P, Escajadillo T, Zhang Q, Olson J, Luk BT, Zhang S, Fang RH, Gao W, Nizet V, Zhang L. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci U S A. 2017;114:11488–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Go G, Lee J, Choi DS, Kim SS, Gho YS. Extracellular vesicle-mimetic ghost nanovesicles for delivering anti-inflammatory drugs to mitigate gram-negative bacterial outer membrane vesicle-induced systemic inflammatory response syndrome. Adv Healthc Mater. 2019;8:e1801082.

    PubMed  Google Scholar 

  52. 52.

    Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater. 2016;15:1037–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods. 2020;177:114–25.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun. 2018;9:2359.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Malhotra S, Dumoga S, Sirohi P, Singh N. Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl Mater Interfaces. 2019;11:22141–51.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, et al. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials. 2016;105:195–205.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Petry F, Smith JR, Leber J, Salzig D, Czermak P, Weiss ML. Manufacturing of human umbilical cord mesenchymal stromal cells on microcarriers in a dynamic system for clinical use. Stem Cells Int. 2016;2016:4834616.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Yan IK, Shukla N, Borrelli DA, Patel T. Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol. 2018;1740:35–41.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Idrus RBH, et al. Three dimensional microcarrier system in mesenchymal stem cell culture: a systematic review. Cell Biosci. 2020;10:75.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Patel DB, Luthers CR, Lerman MJ, Fisher JP, Jay SM. Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system. Acta Biomater. 2019;95:236–44.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Guo S, Debbi L, Zohar B, Samuel R, Arzi RS, Fried AI, et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett. 2021;21:2497–504.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4:69–83.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by 2019 Research Grant from Kangwon National University; Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) grant 2019R1A6C1010006 from Ministry of Education, South Korea; Basic Science Research Program NRF-2019R1C1C1008792, NRF-2020R1A4A1016093 from the Ministry of Science and ICT, South Korea. Figures were created with BioRender.com.

Author information

Affiliations

Authors

Contributions

Juhee Hahm, B.S., Jonghoon Kim, Ph.D. and Jongmin Park, Ph.D. wrote the manuscript.

Corresponding authors

Correspondence to Jonghoon Kim or Jongmin Park.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hahm, J., Kim, J. & Park, J. Strategies to Enhance Extracellular Vesicle Production. Tissue Eng Regen Med 18, 513–524 (2021). https://doi.org/10.1007/s13770-021-00364-x

Download citation

Keywords

  • Extracellular vesicle
  • Large scale
  • Therapeutic
  • Drug delivery