Liver Organoids: Formation Strategies and Biomedical Applications

Abstract

The liver is the most important digestive organ in the body. Several studies have explored liver biology and diseases related to the liver. However, most of these studies have only explored liver development, mechanism of liver regeneration and pathophysiology of liver diseases mainly based on two-dimensional (2D) cell lines and animal models. Traditional 2D cell lines do not represent the complex three-dimensional tissue architecture whereas animal models are limited by inter-species differences. These shortcomings limit understanding of liver biology and diseases. Liver organoid technology is effective in elucidating structural and physiological characteristics and basic tissue-level functions of liver tissue. In this review, formation strategies and a wide range of applications in biomedicine of liver organoid are summarized. Liver organoids are derived from single type cell culture, such as induced pluripotent stem cells (iPSCs), adult stem cells, primary hepatocytes, and primary cholangiocytes and multi-type cells co-culture, such as iPSC-derived hepatic endoderm cells co-cultured with mesenchymal stem cells and umbilical cord-derived endothelial cells. In vitro studies report that liver organoids are a promising model for regenerative medicine, organogenesis, liver regeneration, disease modelling, drug screening and personalized treatment. Liver organoids are a promising in vitro model for basic research and for development of clinical therapeutic interventions for hepatopathy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009;137:466–81.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18:40–55.

    PubMed  Article  Google Scholar 

  3. 3.

    Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70:151–71.

    PubMed  Article  Google Scholar 

  4. 4.

    Akbari S, Arslan N, Senturk S, Erdal E. Next-generation liver medicine using organoid models. Front Cell Dev Biol. 2019;7:345.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19:671–87.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Xiang C, Du Y, Meng G, Yi LS, Deng H. Long-term functional maintenance of primary human hepatocytes in vitro. Science. 2019;364:399–402.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Xia Y, Carpentier A, Cheng X, Block PD, Zhao Y, Zhang Z, et al. Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. J Hepatol. 2017;66:494–503.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications. Gut. 2019;68:2228–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Hindley CJ, Cordero-Espinoza L, Huch M. Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol. 2016;420:251–61.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Shinozawa T, Yoshikawa HY, Takebe T. Reverse engineering liver buds through self-driven condensation and organization towards medical application. Dev Biol. 2016;420:221–9.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Koo BK, Huch M. Organoids:a new in vitro model system for biomedical science and disease modelling and promising source for cell-based transplantation. Dev Biol. 2016;420:197–8.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Ober EA, Lemaigre FP. Development of the liver: insights into organ and tissue morphogenesis. J Hepatol. 2018;68:1049–62.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell. 2015;16:556–65.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345:1247125.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MA, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160:299–312.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Xu R, Zhou X, Wang S, Trinkle C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol Ther. 2021;218:107668.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Wang S, Wang X, Tan Z, Su Y, Liu J, Chang M, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res. 2019;29:1009–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Nguyen R, Da Won BS, Qiao L, George J. Developing liver organoids from induced pluripotent stem cells (iPSCs): an alternative source of organoid generation for liver cancer research. Cancer Lett. 2021;508:13–7.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Wu F, Wu D, Ren Y, Huang Y, Feng B, Zhao N, et al. Generation of hepatobiliary organoids from human induced pluripotent stem cells. J Hepatol. 2019;70:1145–58.

    PubMed  Article  Google Scholar 

  22. 22.

    Vargas-Valderrama A, Messina A, Mitjavila-Garcia MT, Guenou H. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J Biomed Sci. 2020;27:67.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Hoang P, Ma Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater. 2021. https://doi.org/10.1016/j.actbio.2021.01.026.

    Article  PubMed  Google Scholar 

  24. 24.

    Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3:159–73.

    CAS  Article  Google Scholar 

  25. 25.

    Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 2019;10:5658.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    He YT, Zhu XL, Li SF, Zhang BQ, Li Y, Wu Q, et al. Creating rat hepatocyte organoid as an in vitro model for drug testing. World J Stem Cells. 2020;12:1184–95.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Saheli M, Sepantafar M, Pournasr B, Farzaneh Z, Vosough M, Piryaei A, et al. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J Cell Biochem. 2018;119:4320–33.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Yu Y, Alkhawaji A, Ding Y, Mei J. Decellularized scaffolds in regenerative medicine. Oncotarget. 2016;7:58671–83.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Poling HM, Wu D, Brown N, Baker M, Hausfeld TA, Huynh N, et al. Mechanically induced development and maturation of human intestinal organoids in vivo. Nat Biomed Eng. 2018;2:429–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539:560–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Krüger M, Oosterhoff LA, van Wolferen ME, Schiele SA, Walther A, Geijsen N, et al. Cellulose nanofibril hydrogel promotes hepatic differentiation of human liver organoids. Adv Healthc Mater. 2020;9:1901658.

    Article  CAS  Google Scholar 

  33. 33.

    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15:326–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Cruz-Acuña R, Quirós M, Farkas AE, Dedhia PH, Huang S, Siuda D, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol. 2017;19:1326–35.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Mclin VA, Rankin SA, Zorn AM. Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134:2207–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Mun SJ, Ryu JS, Lee MO, Son YS, Oh SJ, Cho HS, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol. 2019;71:970–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Ramli MNB, Lim YS, Koe CT, Demircioglu D, Tng W, Gonzales KAU, et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology. 2020;159:1471–86.e12.

    Google Scholar 

  38. 38.

    Hu H, Gehart H, Artegiani B, LÖpez-Iglesias C, Dekkers F, Basak O, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell. 2018;175:1591–606.e19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, et al. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat Cell Biol. 2019;21:1321–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Lau HCH, Kranenburg O, Xiao H, Yu J. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol. 2020;17:203–22.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    CAS  Article  Google Scholar 

  42. 42.

    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    CAS  Article  Google Scholar 

  43. 43.

    Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell. 2013;12:487–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology. 2021;160:831–46.e10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Kulkeaw K, Tubsuwan A, Tongkrajang N, Whangviboonkij N. Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ. 2020;8:e9968.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Akbari S, Sevinc GG, Ersoy N, Basak O, Kaplan K, Sevinc K, et al. Robust, long-term culture of endoderm-derived hepatic organoids for disease modeling. Stem Cell Reports. 2019;13:627–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33:853–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79:169–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol. 2015;33:845–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv. 2018;36:132–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014;9:396–409.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, et al. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development. 2017;144:1056–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Guan Y, Xu D, Garfin PM, Ehmer U, Hurwitz M, Enns G, et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight. 2017;2:e94954.

    PubMed Central  Article  Google Scholar 

  54. 54.

    Carmon KS, Gong X, Lin Q, Thomas A, Liu Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc Natl Acad Sci U S A. 2011;108:11452–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    de Lau W, Barker N, Low TY, Koo BK, Li V, Teunissen H, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2011;476:293–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Español-Suñer R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143:1564–75.e7.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Ponder KP. Analysis of liver development, regeneration, and carcinogenesis by genetic marking studies. FASEB J. 1996;10:673–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Huch M, Boj SF, Clevers H. Lgr5(+) liver stem cells, hepatic organoids and regenerative medicine. Regen Med. 2013;8:385–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Deng X, Zhang X, Li W, Feng RX, Li L, Yi GR, et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell. 2018;23:114–22.e3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159:163–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159:176–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Schneeberger K, Sánchez-Romero N, Ye S, van Steenbeek FG, Oosterhoff LA, Pla Palacin I, et al. Large-scale production of LGR5-positive bipotential human liver stem cells. Hepatology. 2020;72:257–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Wu HH, Lee OK. Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res Ther. 2017;8:117.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015;524:180–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Grompe M. Liver stem cells, where art thou? Cell Stem Cell. 2014;15:257–8.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, et al. Inflammatory cytokine TNFalpha promotes the long-term expansion of primary hepatocytes in 3D culture. Cell. 2018;175:1607–19.e15.

    Google Scholar 

  67. 67.

    Elbadawy M, Yamanaka M, Goto Y, Hayashi K, Tsunedomi R, Hazama S, et al. Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model. Biomaterials. 2020;237:119823.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Tysoe OC, Justin AW, Brevini T, Chen SE, Mahbubani KT, Frank AK, et al. Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nat Protoc. 2019;14:1884–925.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Takebe T, Sekine K, Kimura M, Yoshizawa E, Ayano S, Koido M, et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 2017;21:2661–70.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Zhang RR, Koido M, Tadokoro T, Ouchi R, Matsuno T, Ueno Y, et al. Human iPSC-derived posterior gut progenitors are expandable and capable of forming gut and liver organoids. Stem Cell Reports. 2018;10:780–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Takebe T, Sekine K, Suzuki Y, Enomura M, Tanaka S, Ueno Y, et al. Self-organization of human hepatic organoid by recapitulating organogenesis in vitro. Transplant Proc. 2012;44:1018–20.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Leite SB, Roosens T, El Taghdouini A, Mannaerts I, Smout AJ, Najimi M, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials. 2016;78:1–10.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Li Y, Wu Q, Wang Y, Weng C, He Y, Gao M, et al. Novel spheroid reservoir bioartificial liver improves survival of nonhuman primates in a toxin-induced model of acute liver failure. Theranostics. 2018;8:5562–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    PubMed  Article  Google Scholar 

  75. 75.

    Lee SD, Park SJ, Han SS, Kim SH, Kim YK, Lee SA, et al. Clinicopathological features and prognosis of combined hepatocellular carcinoma and cholangiocarcinoma after surgery. Hepatobiliary Pancreat Dis Int. 2014;13:594–601.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Rao S, Hossain T, Mahmoudi T. 3D human liver organoids: an in vitro platform to investigate HBV infection, replication and liver tumorigenesis. Cancer Lett. 2021;506:35–44.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23:1424–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Li L, Knutsdottir H, Hui K, Weiss MJ, He J, Philosophe B, et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight. 2019;4:e121490.

    PubMed Central  Article  PubMed  Google Scholar 

  81. 81.

    Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, et al. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep. 2019;27:1265–76.e4.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, et al. Concise review: liver regenerative medicine: from hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells. 2017;35:42–50.

    PubMed  Article  Google Scholar 

  83. 83.

    Hassanein TI, Schade RR, Hepburn IS. Acute-on-chronic liver failure: extracorporeal liver assist devices. Curr Opin Crit Care. 2011;17:195–203.

    PubMed  Article  Google Scholar 

  84. 84.

    Wei S, Tang J, Cai X. Founder cells for hepatocytes during liver regeneration: from identification to application. Cell Mol Life Sci. 2020;77:2887–98.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology. 2011;53:983–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Demetriou AA, Reisner A, Sanchez J, Levenson SM, Moscioni AD, Chowdhury JR. Transplantation of microcarrier-attached hepatocytes into 90% partially hepatectomized rats. Hepatology. 1988;8:1006–9.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O, Grunsven LA. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2015;308:G233–50.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell. 2015;162:766–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Fagiuoli S, Daina E, D’Antiga L, Colledan M, Remuzzi G. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013;59:595–612.

    PubMed  Article  Google Scholar 

  90. 90.

    Gómez-Mariano G, Matamala N, Martínez S, Justo I, Marcacuzco A, Jimenez C, et al. Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease. Hepatol Int. 2020;14:127–37

    PubMed  Article  Google Scholar 

  91. 91.

    Alagille D, Estrada A, Hadchouel M, Gautier M, Odièvre M, Dommergues JP. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr. 1987;110:195–200.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    European Association for Study of Liver. EASL clinical practice guidelines: Wilson’s disease. J Hepatol. 2012;56:671–85.

  93. 93.

    Nantasanti S, Spee B, Kruitwagen HS, Chen C, Geijsen N, Oosterhoff LA, et al. Disease modeling and gene therapy of copper storage disease in canine hepatic Organoids. Stem Cell Reports. 2015;5:895–907.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Leeuwen L, Fitzgerald DA, Gaskin KJ. Liver disease in cystic fibrosis. Paediatr Respir Rev. 2014;15:69–74.

    PubMed  Google Scholar 

  95. 95.

    Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 2019;30:374–84.e6.

    Google Scholar 

  96. 96.

    Nie YZ, Zheng YW, Miyakawa K, Murata S, Zhang RR, Sekine K, et al. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine. 2018;35:114–23.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Liu C, Qin T, Huang Y, Li Y, Sun C. Drug screening model meets cancer organoid technology. Transl Oncol. 2020;13:100840.

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Chen X, Zhang YS, Zhang X, Liu C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact Mater. 2021;6:1012–27.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mengyu Gao, Wanliu Peng and Qiong Wu for their ideas assistance. The National Natural Science Foundation of China, NO. 81770618; Key R&D (Major Science and Technology Project) Project of Sichuan Science and Technology Department, NO.2019YFS0138; The Technological Innovation Project of Chengdu New Industrial Technology Research Institute, NO. 2018-CY02-00046-GX; The 1.3.5 project for disciplines of excellence, West China Hospital, NO.ZYGD18012.

Author information

Affiliations

Authors

Contributions

Xinglong Zhu, Bingqi Zhang and Ji Bao designed the research; Xinglong Zhu, Bingqi Zhang and Yuting He contributed to literature selection and data extraction; Xinglong Zhu and Bingqi Zhang drafted the original manuscript; All authors have read the final article and approved the publication of the manuscript.

Corresponding author

Correspondence to Ji Bao.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhang, B., He, Y. et al. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng Regen Med (2021). https://doi.org/10.1007/s13770-021-00357-w

Download citation

Keywords

  • Liver organoids
  • 3D cell culture
  • Biomedical applications