Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity

Abstract

Background:

In order to produce and isolate the exosome derived from the cell of interests, a serum free environment (starvation) has been essential for excluding the unknown effect from serum-derived exosomes. Recently, serum-free culture media have been developed as a substitute for serum supplemented media so that MSC proliferates with maintaining the original characteristics of the cells in a serum free condition. Due to the different properties of the exosomes representing the states and characteristics of the origin cells, a study is needed to compare the properties of the cell-derived exosomes according to the cell culture media.

Methods:

To compare the cell culture condition on exosomes, human umbilical cord mesenchymal stem cells (UCMSCs) were cultured with two different media, serum containing media, 10% FBS supplemented DMEM (NM) and serum-free chemically defined media, CellCor™ CD MSC (CDM). To remove FBS-derived exosomes from UCMSC cultured with NM, the medium was replaced with FBS-free DMEM for starvation during exosome isolation. The production yield and expression levels of angiogenic and pro-inflammatory factors were compared. And, the subpopulations of exosome were classified depending on the surface properties and loaded cytokines. Finally, the wound healing and angiogenic effects have been evaluated using in vitro assays.

Results:

The UCMSC-derived exosomes under two different cell culture media could be classified into subpopulations according to the surface composition and loaded cytokines. Especially, exosome derived from UCMSC cultured with CDM showed higher expression levels of cytokines related to regenerative bioactivities which resulted in enhanced wound healing and angiogenesis.

Conclusion:

CDM has the advantages to maintain cell proliferation even during the period of exosome isolations and eliminate unknown side effects caused by serum-derived exosomes. Additionally, exosomes derived from UCMSC cultured with CDM show better wound healing and angiogenic effects due to a lot of regeneration-related cytokines and less pro-inflammatory cytokines compared to with NM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng. 2020;11:2041731420943839.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22:824–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Jin Q, Li P, Yuan K, Zhao F, Zhu X, Zhang P, et al. Extracellular vesicles derived from human dental pulp stem cells promote osteogenesis of adipose-derived stem cells via the MAPK pathway. J Tissue Eng. 2020;11:2041731420975569.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5:121–43.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3:e1886.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Wang Z, Wang Y, Wang Z, Gutkind JS, Wang Z, Wang F, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells. 2015;33:456–67.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23:1045–59.

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011;6:481–92.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    CAS  Article  Google Scholar 

  14. 14.

    Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine–a new paradigm for tissue repair. Biomater Sci. 2018;6:60–78.

    Article  Google Scholar 

  15. 15.

    Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper. J Extracell Vesicles. 2015;4:30087.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Russell AE, Sneider A, Witwer KW, Bergese P, Bhattacharyya SN, Cocks A, et al. Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. J Extracell Vesicles. 2019;8:1684862.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Khan M, Kishore R. Stem cell exosomes: cell-freetherapy for organ repair. Adult stem cells. New York: Springer; 2017. p. 315–21.

    Google Scholar 

  20. 20.

    Ko KW, Yoo YI, Kim JY, Choi B, Park SB, Park W, et al. Attenuation of tumor necrosis factor-α induced inflammation by umbilical cord-mesenchymal stem cell derived exosome-mimetic nanovesicles in endothelial cells. Tissue Eng Regen Med. 2020;17:155–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2016;6:32993.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther. 2019;10:158.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ko KW, Park SY, Lee EH, Yoo YI, Kim DS, Kim JY, et al. Integrated bioactive scaffold with polydeoxyribonucleotide and stem-cell-derived extracellular vesicles for kidney regeneration. ACS Nano. 2021;15:7575–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Zou W, Lai M, Zhang Y, Zheng L, Xing Z, Li T, et al. Exosome release is regulated by mTORC1. Adv Sci (Weinh). 2019;6:1801313.

    Article  CAS  Google Scholar 

  25. 25.

    Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci. 2020;8:4109–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Seminars in cell & developmental biology. Amsterdam: Elsevier; 2017. p. 56–64.

    Google Scholar 

  27. 27.

    Bellio M, Lee Y, Young K, Khan A. Comparison of miRNA Cargo within Wharton’s Jelly mesenchymal stem cell-derived exosomes manufactured in FBS and hPLT expansion media. Cytotherapy. 2020;22:S47.

    Google Scholar 

  28. 28.

    Panduri V, Weitzman SA, Chandel NS, Kamp DW. Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol. 2004;286:L1220-7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75:2873–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Patel GK, Khan MA, Zubair H, Srivastava SK, Singh S, Singh AP. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9:5335.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014;3:24783.

    Article  Google Scholar 

  32. 32.

    van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, et al. Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro. 2010;24:1053–63.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33.

    Grigor’eva AE, Dyrkheeva NS, Bryzgunova OE, Tamkovich SN, Chelobanov BP, Ryabchikova EI. Contamination of exosome preparations, isolated from biological fluids. Biomed Khim. 2017;63:91-6.

    Google Scholar 

  34. 34.

    Kim JY, Rhim WK, Yoo YI, Kim DS, Ko KW, Heo Y, et al. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng. 2021;12:20417314211008626.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lai RC, Yeo RWY, Tan SS, Zhang B, Yin Y, Sze NSK, et al. Mesenchymal stem cell exosomes: the future MSC-based therapy? mesenchymal stem cell therapy. New York: Springer; 2013. p. 39–61.

    Book  Google Scholar 

  36. 36.

    Shih DT, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N Biotechnol. 2015;32:199–211.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Gottipamula S, Muttigi M, Kolkundkar U, Seetharam R. Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif. 2013;46:608–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Müller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A, et al. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy. 2006;8:437–44.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med. 2017;2:170–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Casal HL, Mantsch HH. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta. 1984;779:381–401.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Mihály J, Deák R, Szigyártó IC, Bóta A, Beke-Somfai T, Varga Z. Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations. Biochim Biophys Acta Biomembr. 2017;1859:459–66.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi H, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med. 2015;4:513–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Zhang ZG, Buller B, Chopp M. Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15:193–203.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2014;2:606–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci. 2019;20:4684.

    CAS  PubMed Central  Article  Google Scholar 

  46. 46.

    Cha H, Hong S, Park JH, Park HH. Stem cell-derived exosomes and nanovesicles: promotion of cell proliferation, migration, and anti-senescence for treatment of wound damage and skin ageing. Pharmaceutics. 2020;12:1135.

    CAS  PubMed Central  Article  Google Scholar 

  47. 47.

    Wei H, Chen Q, Lin L, Sha C, Li T, Liu Y, et al. Regulation of exosome production and cargo sorting. Int J Biol Sci. 2021;17:163-77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, et al. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. J Nanobiotechnology. 2020;18:178.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Lee JH, Ha DH, Go HK, Youn J, Kim HK, Jin RC, et al. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int J Mol Sci. 2020;21:4774.

    CAS  PubMed Central  Article  Google Scholar 

  50. 50.

    Ludwig N, Yerneni SS, Menshikova EV, Gillespie DG, Jackson EK, Whiteside TL. Simultaneous Inhibition of glycolysis and oxidative phosphorylation triggers a multi-fold increase in secretion of exosomes: possible role of 2′, 3′-cAMP. Sci Rep. 2020;10:6948.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002;270:211–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One. 2015;10:e0138849.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Fan SJ, Kroeger B, Marie PP, Bridges EM, Mason JD, McCormick K, et al. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J. 2020;39:e103009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Øvstebø R, et al. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One. 2018;13:e0204276.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Salimi L, Akbari A, Jabbari N, Mojarad B, Vahhabi A, Szafert S, et al. Synergies in exosomes and autophagy pathways for cellular homeostasis and metastasis of tumor cells. Cell Biosci. 2020;10:64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Gupta K, Rispin A, Stitzel K, Coecke S, Harbell J. Ensuring quality of in vitro alternative test methods: issues and answers. Regul Toxicol Pharmacol. 2005;43:219–24.

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX. 2003;20:275–81.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Oikonomopoulos A, van Deen WK, Manansala AR, Lacey PN, Tomakili TA, Ziman A, et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep. 2015;5:16570.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Riordan NH, Madrigal M, Reneau J, de Cupeiro K, Jiménez N, Ruiz S, et al. Scalable efficient expansion of mesenchymal stem cells in xeno free media using commercially available reagents. J Transl Med. 2015;13:232.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Barilani M, Lavazza C, Boldrin V, Ragni E, Parazzi V, Crosti M, et al. A chemically defined medium-based strategy to efficiently generate clinically relevant cord blood mesenchymal stromal colonies. Cell Transplant. 2016;25:1501–14.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P. Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem. 2017;59:255–65.

    CAS  Article  Google Scholar 

  62. 62.

    Sun L, Wang HX, Zhu XJ, Wu PH, Chen WQ, Zou P, et al. Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro. Acta Pharmacol Sin. 2014;35:381–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Li J, Lee Y, Johansson HJ, Mäger I, Vader P, Nordin JZ, et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles. 2015;4:26883.

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Haraszti RA, Miller R, Dubuke ML, Rockwell HE, Coles AH, Sapp E, et al. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience. 2019;16:230–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Ollesch J, Drees SL, Heise HM, Behrens T, Brüning T, Gerwert K. FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification. Analyst. 2013;138:4092–102.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Smith ZJ, Lee C, Rojalin T, Carney RP, Hazari S, Knudson A, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015;4:28533.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  67. 67.

    Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J Control Release. 2016;235:337–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Danieli P, Malpasso G, Ciuffreda MC, Cervio E, Calvillo L, Copes F, et al. Conditioned medium from human amniotic mesenchymal stromal cells limits infarct size and enhances angiogenesis. Stem Cells Transl Med. 2015;4:448–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Püschel F, Favaro F, Redondo-Pedraza J, Lucendo E, Iurlaro R, Marchetti S, et al. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc Natl Acad Sci U S A. 2020;117:9932–41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Gorgun C, Ceresa D, Lesage R, Villa F, Reverberi D, Balbi C, et al. Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell (MSC)-derived soluble proteins and extracellular vesicles (EVs). Biomaterials. 2021;269:120633.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program (2017R1A6A3A04012362 and 2020R1A2B5B03002344) and Bio & Medical Technology Development Program (2018M3A9E2024579) through the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT), and the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, Republic of Korea, the Ministry of Food and Drug Safety) (202011A05-05), Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong Keun Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Rhim, WK., Seo, H.J. et al. Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity. Tissue Eng Regen Med 18, 355–367 (2021). https://doi.org/10.1007/s13770-021-00352-1

Download citation

Keywords

  • Exosome
  • Mesenchymal stem cell
  • Serum-free media
  • Wound healing
  • Angiogenesis