Comparison of Autogenous Tooth Materials and Other Bone Grafts

Abstract

Autogenous odontogenic materials are a new, highly biocompatible option for jaw restoration. The inorganic component of autogenous teeth acts as a scaffold to maintain the volume and enable donor cell attachment and proliferation; the organic component contains various growth factors that promote bone reconstruction and repair. The composition of dentin is similar to that of bone, which can be a rationale for promoting bone reconstruction. Recent advances have been made in the field of autogenous odontogenic materials, and studies have confirmed their safety and feasibility after successful clinical application. Autogenous odontogenic materials have unique characteristics compared with other bone-repair materials, such as the conventional autogenous, allogeneic, xenogeneic, and alloplastic bone substitutes. To encourage further research into odontogenic bone grafts, we compared the composition, osteogenesis, and development of autogenous odontogenic materials with those of other bone grafts. In conclusion, odontogenic bone grafts should be classified as a novel bone substitute.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury Int J Care Inj. 2011;42:77–81.

    Article  Google Scholar 

  2. 2.

    Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury Int J Care Inj. 2011;42:3–15.

    Article  Google Scholar 

  3. 3.

    Kim YK, Kim SG, Yun PY, Yeo IS, Jin SC, Oh JS, et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:39–45.

    Article  Google Scholar 

  4. 4.

    Chen Z, Liu H, Liu X, Lian X, Guo Z, J H-J, et al. Improved workability of injectable calcium sulfate bone cement by regulation of self-setting properties. Mater Sci Eng C Mater Biol Appl. 2013;33:1048–53.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kim YK, Kim SG, Oh JS, Jin SC, Son JS, Kim SY, et al. Analysis of the inorganic component of autogenous tooth bone graft material. J Nanosci Nanotechnol. 2011;11:7442–5.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Kim YK, Kim SG, Byeon JH, Lee HJ, Um IU, Lim SC, et al. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:496–503.

    PubMed  Article  Google Scholar 

  7. 7.

    Kim YK, Lee J, Um IW, Kim KW, Murata M, Akazawa T, et al. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013;39:103–11.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg. 2008;66:616–24.

    PubMed  Article  Google Scholar 

  9. 9.

    Murata M, Akazawa T, Mitsugi M, Um IW, Kim YK. Human dentin as novel biomaterial for bone regeneration. Ch 6 (InTech, Europe/China 2011)

  10. 10.

    Um IW, Ku JK, Lee BK, Yun PY, Nam JH. Postulated release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) from demineralized dentin matrix. J Korean Assoc Oral Maxillofac Surg. 2019;45:123–8.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Um IW, Ku JK, Kim YK, Lee BK, Leem DH. Histological review of demineralized dentin matrix as a carrier of rhBMP-2. Tissue Eng Part B Rev. 2020;26:284–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Atiya BK, Shanmuhasuntharam P, Huat S, Abdulrazzak S, Oon H. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model. Int J Oral Maxillofac Implants. 2014;29:165–70.

    Article  Google Scholar 

  13. 13.

    Reis-Filho CR, Silva ER, Martins AB, Pessoa FF, Gomes PVN, Araújo MSC, et al. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats. Arch Oral Biol. 2012;57:469–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Nampo T, Watahiki J, Enomoto A, Taguchi T, Ono M, Nakano H, et al. A new method for alveolar bone repair using extracted teeth for the graft material. J Periodontol. 2010;81:1264–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Jung MH, Lee JH, Wadhwa P, Jiang HB, Jang HS, Lee ES. Bone regeneration in peri-implant defect using autogenous tooth biomaterial enriched with platelet-rich fibrin in animal model. Appl Sci. 2020;10:1939.

    CAS  Article  Google Scholar 

  16. 16.

    Kim YK, Lee JH, Um IW, Cho WJ. Guided bone regeneration using demineralized dentin matrix: long-term follow-up. J Oral Maxillofac Surg. 2015;1:e1–e9.

  17. 17.

    Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98:6–9.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010;16:493–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93:2227–36.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Rogers GF, Greene AK. Autogenous bone graft: basic science and clinical implications. J Craniofac Surg. 2012;23:323–7.

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Bell RB, Blakey GH, White RP, Hillebrand DG, Molina A. Staged reconstruction of the severely atrophic mandible with autogenous bone graft and endosteal implants. J Oral Maxillofac Surg. 2002;60:1135–41.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Zins JE, Whitaker LA. Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg. 1983;72:778–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Schwarz F, Hazar D, Becker K, Sader R, Becker J. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study. J Clin Periodontol. 2018;45:996–1004.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Schwarz F, Golubovic V, Becker K, Mihatovic I. Extracted tooth roots used for lateral alveolar ridge augmentation: a proof-of-concept study. J Clin Periodontol. 2016;43:345–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Sun Y, Prasad M, Gao T, Wang X, Zhu Q, D'Souza R, et al. Failure to process dentin matrix protein 1 (DMP1) into fragments leads to its loss of function in osteogenesis. J Biol Chem. 2010;285:31713–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Borie E, Fuentes R, Sol MD, Oporto G, Engelke W. The influence of FDBA and autogenous bone particles on regeneration of calvaria defects in the rabbit: a pilot study. Ann Anat. 2011;193:412–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Gomes KU, Carlini JOL, Biron C, Rapoport AO, Dedivitis RA. Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2008;66:2335–8.

    Article  Google Scholar 

  28. 28.

    Piattelli A, Scarano A, Corigliano M, Piattelli M. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. Biomaterials. 1996;17:1127–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Vangsness CT, Garcia IA, Mills CR, Kainer MA, Roberts MR, Moore TM. Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med. 2003;31:474.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Buck BE, Resnick L, Shah SM, Malinin TI. Human immunodeficiency virus cultured from bone. Implications for transplantation. Clin Orthop Relat Res. 1990;251:249.

    Google Scholar 

  31. 31.

    Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg. 2005;16:981–9.

    PubMed  Article  Google Scholar 

  32. 32.

    Kim SG, Kim YK, Park JS. Scientific evidence for autogenous tooth bone graft material (AutoBT). J Korean Dent Sci. 2009;2:42–5.

    Google Scholar 

  33. 33.

    Murugan R, Rao KP, Kumar TSS. Heat-deproteinated xenogeneic bone from slaughterhouse waste: physico-chemical properties. Bull Mater Sci. 2003;26:523–8.

    CAS  Article  Google Scholar 

  34. 34.

    Kao ST, Scott DD. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007;19:513–21.

    PubMed  Article  Google Scholar 

  35. 35.

    Sartori S, Silvestri M, Forni F, Cornaglia A, Tesei P, Cattaneo V. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14:369–72.

    PubMed  Article  Google Scholar 

  36. 36.

    Wu D, Zhou L, Lin J, Chen J, Huang W, Chen Y. Immediate implant placement in anterior teeth with grafting material of autogenous tooth bone vs xenogenic bone. BMC Oral Health. 2019;19:266.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Jun SH, Ahn JS, Lee JI, Ahn KJ, Yun PY, Kim YK. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure. J Adv Prosthodont. 2014;6:528–38.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Kim SG, Kim HK, Lim SC. Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg. 2001;29:282–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019;46:92–102.

    PubMed  Article  Google Scholar 

  40. 40.

    Jones JR, Brauer DS, Hupa L, Greenspan DC. Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glass Sci. 2016;7:423–34.

    CAS  Article  Google Scholar 

  41. 41.

    Hassan KS, Kassim A, Ogaly AURA. A comparative evaluation of immediate dental implant with autogenous versus synthetic guided bone regeneration. Oral SurgOral Med Oral Pathol Oral Radiol Endod. 2008;106:8–15.

    Article  Google Scholar 

  42. 42.

    Kim YK, Lee J, Yun JY, Yun PY, Um IW. Comparison of autogenous tooth bone graft and synthetic bone graft materials used for bone resorption around implants after crestal approach sinus lifting: a retrospective study. J Periodontal Implant Sci. 2014;44:216–21.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Costantino PD, Friedman CD. Synthetic bone graft substitutes. Otolaryngol Clin North Am. 1994;27:1037–74.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Calonius PE, Visapaeae A. The inorganic constituents of human teeth and bone examined by X-ray emission spectrography. Arch Oral Biol. 1965;10:9–13.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Zipkin I. The Inorganic Composition of Bones and Teeth Ch 3. US: Springer; 1970.

    Google Scholar 

  46. 46.

    Xue J, Zhang L, Zou L, Liao Y, Li W. High-resolution X-ray microdiffraction analysis of natural teeth. J Synchrotron Radiat. 2008;15:235–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials. 2002;23:751–5.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Linde A. Dentin matrix proteins: composition and possible functions in calcification. Anat Rec Adv Integr Anat Evolut Biol. 1989;224:154–66.

    CAS  Google Scholar 

  49. 49.

    Kim YK, Lee J, Kim KW, Um IW, Ito K. Analysis of organic components and osteoinductivity in autogenous tooth bone graft material. Phytochemistry. 2013;35:2337–45.

    Google Scholar 

  50. 50.

    Ritchie HH, Ritchie DG, Wang LH. Six decades of dentinogenesis research. Historical and prospective views on phosphophoryn and dentin sialoprotein. Eur J Oral Sci. 1998;106:211–20.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2003;22:233–41.

    Article  CAS  Google Scholar 

  52. 52.

    Hollinger J, Mark DE, Bach DE, Reddi AH, Seyfer AE. Calvarial bone regeneration using osteogenin. J Oral Maxillofac Surg. 1989;47:1182–6.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Smith AJ, Matthews JB, Hall RC. Transforming growth factor-beta1 (TGF-beta1) in dentine matrix. Ligand activation and receptor expression. Eur J Oral Sci. 1998;106:179–84.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res. 2004;22:526–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Um IW, Kim YK, Park JC, Lee JH. Clinical application of autogenous demineralized dentin matrix loaded with recombinant human bone morphogenetic-2 for socket preservation: A case series. Clin Implant Dent Relat Res. 2019;21:4–10.

    PubMed  Article  Google Scholar 

  56. 56.

    Kim YK, Um IW, An HJ, Kim KW, Hong KS, Murata M. Effects of demineralized dentin matrix used as an rhBMP-2 carrier for bone regeneration. J Hard Tissue Biol. 2014;23:415–22.

    CAS  Article  Google Scholar 

  57. 57.

    Pang KM, Um IW, Kim YK, Woo JM, Kim SM, Lee JH. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: a prospective randomized clinical trial in comparison with anorganic bovine bone. Clin Oral Implants Res. 2017;28:809–15.

    PubMed  Article  Google Scholar 

  58. 58.

    Um IW, Kim YK, Mitsugi M. Demineralized dentin matrix scaffolds for alveolar bone engineering. J Indian Prosthodont Soc. 2017;17:120.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Kim YK, Kim SG, Bae JH, Um IW, Jeong KI. Guided bone regeneration using autogenous tooth bone graft in implant therapy: case series. Implant Dent. 2014;23:138–43.

    PubMed  Article  Google Scholar 

  60. 60.

    Min B, Song JS, Kim SO, Kim KM, Park WS, Lee JH. Osteoconduction capacity of human deciduous and permanent teeth ash in a rat calvarial bone defect model. Cell Tissue Bank. 2015;16:361–9.

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Kim SY, Kim SG, Lim SC, Bae CS. Effects on bone formation in ovariectomized rats after implantation of tooth ash and plaster of Paris mixture. J Oral Maxillofac Surg. 2004;62:852–7.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Gu HR, Jang HS, Kim SW, Park JC, Kim BO. Periodontal regeneration using the mixture of human tooth-ash and plaster of paris in dogs. J Korean Acad Periodontol. 2006;36:15–26.

    Article  Google Scholar 

  63. 63.

    Jeong KI, Kim SG, Oh JS, Lee SY, Cho YS, Yang SS, et al. Effect of platelet-rich plasma and platelet-rich fibrin on peri-implant bone defects in dogs. J Biomed Nanotechnol. 2013;9:535–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Sarala C, Chauhan M, Sandhya PS, Dharmendra CH, Mitra N. Autogenous tooth bone graft: Ingenious bone regeneration material. Indian J Dent Sci. 2018;10:56–9.

    Article  Google Scholar 

  65. 65.

    Kim JH, Kim SG, Lim SC, Oh JS, You JS, Jeong MA. Histomorphometric analysis of bone formation in bony defects around implants in adult dogs: a comparison of grafts of low and high heat-treated autogenous tooth ash. Implant Dent. 2013;22:639–44.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Wu J, Li N, Fan Y, Wang Y, Gu Y, Li Z, Pan Y, et al. The conditioned medium of calcined tooth powder promotes the osteogenic and odontogenic differentiation of human dental pulp stem cells via MAPK signaling pathways. Stem Cells Int. 2019;19:1–13.

    Google Scholar 

  67. 67.

    Kim BK, Kim SG, Kim SY, Lim SC, Kim YK. A comparison of bone generation capability in rabbits using tooth ash and plaster of Paris with platelet-rich plasma or fibrin sealant. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e8–14.

    Google Scholar 

  68. 68.

    Kim YK, Kim SG, Bae JH, Um IW, Oh JS, Jeong KI. Guide bone regeneration using autogenous teeth: case reports. J Korean Assoc Oral Maxillofac Surg. 2011;37:142–7.

    Article  Google Scholar 

  69. 69.

    Kim GW, Yeo IS, Kim SG, Um IW, Kim YK. Analysis of crystalline structure of autogenous tooth bone graft material: X-ray diffraction analysis. J Korean Assoc Oral Maxillofac Surg. 2011;37:225–8.

    Article  Google Scholar 

  70. 70.

    Yeomans JD, Urist MR. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch Oral Biol. 1967;12:999–1006.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Ku HR, Jang HS, Kim SG, Jeong MJ, Park JC, Kim HJ, et al. Guided tissue regeneration of the mixture of human tooth-ash and plaster of paris in dogs. KEM. 2007;330–332:1327–30.

    Article  Google Scholar 

  72. 72.

    Qin X, Raj RM, Liao XF, Shi W, Ma B, Gong SQ, et al. Using rigidly fixed autogenous tooth graft to repair bone defect: an animal model. Dent Traumatol. 2014;30:380–4.

    PubMed  Article  Google Scholar 

  73. 73.

    Butler WT. Dentin matrix proteins. Eur J Oral Sci. 1998;106:204–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Wang X, Zhang Q, Chen Z, Zhang L. Immunohistochemical localization of LIM mineralization protein 1 in pulp-dentin complex of human teeth with normal and pathologic conditions. J Endod. 2008;34:143–7.

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol. 2000;45:1013–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Qian Y, Huang HZ. The role of RANKL and MMP9 in the bone resorption caused by ameloblastoma. J Oral Pathol Med. 2010;39:592–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Morgan S, Poundarik AA, Vashishth D. Do non-collagenous proteins affect skeletal mechanical properties? Calcif Tissue Int. 2015;97:281–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci USA. 2012;109:19178–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF-$beta;1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res. 2004;22:526–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Bessho K, Tagawa T, Murata M. Purification of rabbit bone morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg. 1990;48:162–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Takamitsu K, Tokutaro M, Yosuke K, Kei-ichiro M, Takashi I, Yuya N, et al. Bone regeneration using dentin matrix depends on the degree of demineralization and particle size. PLoS ONE. 2016;11:e0147235.

    Article  CAS  Google Scholar 

  82. 82.

    Park M, Mah YJ, Kim DH, Kim ES, Park EJ. Demineralized deciduous tooth as a source of bone graft material: its biological and physicochemical characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:307–14.

    PubMed  Article  Google Scholar 

  83. 83.

    Boden SD, Liu Y, Hair GA, Helms JA, Hu D, Racine M, et al. LMP-1, a LIM-domain protein, mediates BMP-6 effects on bone formation. Endocrinology. 1998;139:5125–34.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Palosaari H, Wahlgren J, Larmas M, Rönkä H, Sorsa T, Salo T. The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulated by TGF-beta1. J Dent Res. 2000;79:77–84.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Tjäderhane L, Salo T, Larjava H, Larmas M, Overall CM. A novel organ culture method to study the function of human odontoblasts in vitro: gelatinase expression by odontoblasts is differentially regulated by TGF-β1. J Dent Res. 1998;77:1486–96.

    PubMed  Article  Google Scholar 

  86. 86.

    Rice DPC, Kim HJ, Thesleff I. Detection of gelatinase B expression reveals osteoclastic bone resorption as a feature of early calvarial bone development. Bone. 1997;21:479–86.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Camelo M, Nevins ML, Schenk RK, Lynch SE, Nevins M. Periodontal regeneration in human Class II furcations using purified recombinant human platelet-derived growth factor-BB (rhPDGF-BB) with bone allograft. Int J Periodontics Restor Dent. 2003;23:213–25.

    Google Scholar 

  88. 88.

    Shen WD, Masakazu M, Hiroshi D, Kanji S. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology. 1997;138:2953–62.

    Article  Google Scholar 

  89. 89.

    Dunstan CR, Boyce R, Boyce BF, Garrett IR, Izbicka E, Burgess WH, et al. Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J Bone Miner Res. 1999;14:953–9.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Mccarthy TL, Centrella M, Raisz LG, Canalis E. Prostaglandin E2 stimulates insulin-like growth factor I synthesis in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1991;128:2895–900.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res. 1990;5:717–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Huang B, Maciejewska I, Sun Y, Peng T, Qin D, Lu Y, et al. Identification of full-length dentin matrix protein 1 in dentin and bone. Calcif Tissue Int. 2008;82:401–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Ogbureke KUE, Nikitakis NG, Warburton G, Ord RA, Sauk JJ, Waller JL, et al. Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol. 2007;43:920–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Sun Y, Lu Y, Chen L, Gao T, Souza RD, Feng JQ, et al. DMP1 processing is essential to dentin and jaw formation. J Dent Res. 2011;90:624.

    Google Scholar 

  95. 95.

    Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, et al. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol. 2009;28:221–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Macdougall M, Nydegger J, Gu TT, Simmons D, Luan X, Ca VA, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2010;39:25–37.

    Google Scholar 

  97. 97.

    Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, et al. The expression of dentin sialophosphoprotein gene in bone. J Dent Res. 2002;81:392–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Qin C, Brunn JC, Cadena E, Ridall A, Butler WT. Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res. 2003;44:179–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Handschin AE. Cbfa-1 (Runx-2) and osteocalcin expression by human osteoblasts in heparin osteoporosis in vitro. Clin Appl Thromb Hemost. 2006;12:465–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Wolf G. Function of the bone protein osteocalcin: definitive evidence. Nutr Rev. 1996;54:332–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981;26:99–105.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod. 2018;19:18.

    Article  Google Scholar 

  103. 103.

    Rodrigues WC, Silva Fabris AL, Hassumi JS, Gonçalves A, Sonoda CK, Okamoto R. Kinetics of gene expression of alkaline phosphatase during healing of alveolar bone in rats. Br J Oral Maxillofac Surg. 2016;54:531–5.

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Kim JM, Yang YS, Park KH, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Akazawa T, Murata M, Hino J, Nagano F, Shigyo T, Nomura T, et al. Surface structure and biocompatibility of demineralized dentin matrix granules soaked in a simulated body fluid. Appl Surf Sci. 2012;262:51–5.

    CAS  Article  Google Scholar 

  106. 106.

    Um IW. Demineralized dentin matrix (DDM) as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2). Adv Exp Med Biol. 2018;1077:487–99.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Jung GU, Jeon TH, Kang MH, Um IW, Song IS, Ryu JJ, et al. Volumetric, radiographic, and histologic analyses of demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 for ridge preservation: a prospective randomized controlled trial in comparison with xenograft. Appl Sci. 2018;8:1288.

    Article  CAS  Google Scholar 

  108. 108.

    Umebayashi M, Ohba S, Kurogi T, Noda S, Asahina I. Full regeneration of maxillary alveolar bone using autogenous partially demineralized dentin matrix and PCBM for implant-supported full arch rehabilitation. J Oral Implantol. 2020;46:122–7.

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent. 2011;20:471–5.

    PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Reddi AH, Huggins CB. Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc Soc Exp Biol Med. 2016;143:634–7.

    Article  Google Scholar 

  111. 111.

    Gual-Vaqués P, Polis-Yanes C, Estrugo-Devesa A, Ayuso-Montero R, López-López J. Autogenous teeth used for bone grafting: a systematic review. Medicina Oral Patologia oral y cirugia bucal. 2017;23:e112.

    Google Scholar 

  112. 112.

    Yeomans JD, Urist MR. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Pergamon. 1967;12:999.

    CAS  Google Scholar 

  113. 113.

    Kim YK, Kim SG, Um IW, Kim KW. Bone grafts using autogenous tooth blocks: a case series. Implant Dent. 2013;22:584–9.

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Lee EG, Lee JY, Kim YK, Um IW, Choi JH. Delayed implant placement after extraction socket reconstruction and ridge augmentation using autogenous tooth bone graft material: case reports. Dentistry. 2013;03:2161–1122.

    Google Scholar 

  115. 115.

    Tanoue R, Ohta K, Miyazono Y, Iwanaga J, Koba A, Natori T, et al. Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone. Sci Rep. 2018;8:2858.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Meikle MC, Papaioannou S, Ratledge TJ, Speight PM, Watt-Smith SR, Hill PA, Reynolds JJ. Effect of poly DL-lactide-co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit. Biomaterials. 1994;15:513–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Togari K, Miyazawa K, Yagihashi K, Tabuchi M, Maeda H, Kawai T, et al. Bone regeneration by demineralized dentin matrix in skull defects of rats. J Hard Tissue Biol. 2012;21:25–34.

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors thank the CONVERSATIONALIST club of Shandong First Medical University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Heng Bo Jiang or Eui-Seok Lee.

Ethics declarations

Conflict of interest

We declare that we have no financial or personal relationships with other people or organizations that can inappropriately influence our work.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, X., Qi, Y. et al. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng Regen Med (2021). https://doi.org/10.1007/s13770-021-00333-4

Download citation

Keywords

  • AutoBT
  • Autograft
  • Bone reconstruction
  • Implant
  • Tooth material