The Therapeutic Potential of Amniotic Fluid-Derived Stem Cells on Busulfan-Induced Azoospermia in Adult Rats

Abstract

BACKGROUND:

Busulfan is an alkylating chemotherapeutic agent that is routinely prescribed for leukemic patients to induce myelo-ablation. However, it also results in azoospermia and infertility in cancer survivors. This research was constructed to explore the possible therapeutic role of amniotic fluid-derived stem cells (AFSCs) in improving busulfan-induced azoospermia in adult rats.

METHODS:

Forty two adult male albino rats were randomized into: (1) control group, (2) azoospermia group, (3) spontaneous recovery group, and (4) AFSCs-treated group, in which AFSCs were transplanted through their injection into the testicular efferent ducts. The assessment included a histo-pathological examination of the seminiferous tubules by the light and transmission electron microscopes. Additionally, the confocal laser scanning microscope was used for confirmation of homing of the implanted cells. Moreover, we conducted an immuno-fluorescence study for detection of the proliferating cell nuclear antigen (PCNA) in the spermatogenic cells, epididymal sperm count, and a histo-morphometric study.

RESULTS:

AFSCs successfully homed over the basement membrane of the injured seminiferous tubules. They greatly attenuated busulfan-induced degenerative and oxidative changes. They also caused a re-expression of PCNA in the germ cells, leading to resumption of spermatogenesis and re-appearance of spermatozoa.

CONCLUSION:

AFSCs could be a promising treatment modality for male infertility induced by chemotherapy, as they possess prominent regenerative, anti-apoptotic, and anti-inflammatory potentials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jahnukainen K, Mitchell RT, Stukenborg JB. Testicular function and fertility preservation after treatment for haematological cancer. Curr Opin Endocrinol Diabetes Obes. 2015;22:217–23.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bartelink I, Lalmohamed A, van Reij EM, Dvorak CC, Savic RM, Zwaveling J, et al. A new harmonized approach to estimate busulfan exposure predicts survival and toxicity after hematopoietic cell transplantation in children and young adults: a multicenter retrospective cohort analysis. Lancet Haematol. 2016;3:e526–36.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Panahi S, Abdollahifar MA, Aliaghaei A, Nazarian H, Paktinat S, Abdi S, et al. Application of stereological methods for unbiased estimation of sperm morphology in the mice induced by busulfan. Anat Cell Biol. 2017;50:301–5.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pantalone A, Antonucci I, Guelfi M, Pantalone P, Usuelli FG, Stuppia L, et al. Amniotic fluid stem cells: an ideal resource for therapeutic application in bone tissue engineering. Eur Rev Med Pharmacol Sci. 2016;20:2884–90.

    CAS  PubMed  Google Scholar 

  6. 6.

    Loukogeorgakis SP, De Coppi P. Stem cells from amniotic fluid-Potential for regenerative medicine. Best Pract Res Clin Obstet Gynaecol. 2016;31:45–57.

    PubMed  Google Scholar 

  7. 7.

    Wen ST, Chen W, Chen HL, Lai CW, Yen CC, Lee KH, et al. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury. PLoS One. 2013;8:e75383.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Mun-Fun H, Ferdaos N, Hamzah SN, Ridzuan N, Hisham NA, Abdullah S, et al. Rat full term amniotic fluid harbors highly potent stem cells. Res Vet Sci. 2015;102:89–99.

    PubMed  Google Scholar 

  9. 9.

    Gholizadeh-Ghalehaziz S, Farahzadi R, Fathi E, Pashaiasl M. A mini overview of isolation, characterization and application of amniotic fluid stem cells. Int J Stem Cells. 2015;8:115–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wang M, Li H, Si J, Dai J, Shi J, Wang X, et al. Amniotic fluid-derived stem cells mixed with platelet rich plasma for restoration of rat alveolar bone defect. Acta Biochim Biophys Sin (Shanghai). 2017;49:197–207.

    CAS  Google Scholar 

  11. 11.

    Al-Husseiny F, Sobh MA, Ashour RH, Foud S, Medhat T, El-Gilany AH, et al. Amniotic fluid-derived mesenchymal stem cells cut short the acuteness of cisplatin-induced nephrotoxicity in Sprague–Dawley rats. Int J Stem Cells. 2016;9:70–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Katsares V, Petsa A, Felesakis A, Paparidis Z, Nikolaidou E, Gargani S, et al. A rapid and accurate method for the stem cell viability evaluation: the case of the thawed umbilical cord blood. Lab Med. 2015;40:557–60.

    Google Scholar 

  13. 13.

    Thilakavathy K, Nordin N, Ramasamy R, Ghoraishizadeh P, Rohayu IM, Singh G. Characteristics of full-term amniotic fluid-derived mesenchymal stem cells in different culture media. In: Pham PV, editor. Mesenchymal stem cells: isolation, characterization and applications. Croatia: IntechOpen; 2017. p. 39–54.

    Google Scholar 

  14. 14.

    Pochampally R. Colony forming unit assays for MSCs. Methods Mol Biol. 2008;449:83–91.

    PubMed  Google Scholar 

  15. 15.

    Molecular Probes. DiI Derivatives for Long-Term Cellular Labeling. 2005. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp06999.pdf. Accessed July 2020.

  16. 16.

    BioTek. Sample preparation for fluorescence microscopy: an introduction. Concepts and tips for better fixed sample imaging results. 2015. https://www.biotek.com/resources/white-papers/sample-preparation-for-fluorescence-microscopy-an-introduction-concepts-and-tips-for-better-fixed-sample-imaging-results/. Accessed July 2020.

  17. 17.

    Ghasemzadeh-Hasankolaei M, Batavani R, Eslaminejad MB, Sayahpour F. Transplantation of autologous bone marrow mesenchymal stem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells. 2016;9:250–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jafarian A, Lakpour N, Sadeghi MR, Salehkhou S, Akhondi MM. Transplantation of spermatogonial stem cells suspension into rete testis of azoospermia mouse model. Urol J. 2018;15:40–7.

    PubMed  Google Scholar 

  19. 19.

    Tamadon A, Mehrabani D, Rahmanifar F, Jahromi AR, Panahi M, Zare S, et al. Induction of spermatogenesis by bone marrow-derived mesenchymal stem cells in busulfan-induced azoospermia in hamster. Int J Stem Cells. 2015;8:134–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ghasemzadeh-Hasankolaei M, Eslaminejad MB, Sedighi-Gilani M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim. 2016;52:49–61.

    CAS  PubMed  Google Scholar 

  21. 21.

    Bilinska B, Hejmej A, Kotula-Balak M. Preparation of testicular samples for histology and immunohistochemistry. Methods Mol Biol. 2018;1748:17–36.

    CAS  PubMed  Google Scholar 

  22. 22.

    Dykstra MJ. Specimen preparation. In: Michael JD, editor. A Manual of applied techniques for biological electron microscopy. 4th ed. New York: Plenum Press; 2017. p. 1–18.

    Google Scholar 

  23. 23.

    Du Z, Xu S, Hu S, Yang H, Zhou Z, Sidhu K, et al. Melatonin attenuates detrimental effects of diabetes on the niche of mouse spermatogonial stem cells by maintaining Leydig cells. Cell Death Dis. 2018;9:968.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Levi M, Stemmer SM, Stein J, Shalgi R, Ben-Aharon I. Treosulfan induces distinctive gonadal toxicity compared with busulfan. Oncotarget. 2018;9:19317–27.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Tajaddini S, Ebrahimi S, Behnam B, Bakhtiyari M, Joghataei MT, Abbasi M, et al. Antioxidant effect of manganese on the testis structure and sperm parameters of formalin-treated mice. Andrologia. 2014;46:246–53.

    CAS  PubMed  Google Scholar 

  26. 26.

    Rahmanifar F, Tamadon A, Mehrabani D, Zare S, Abasi S, Keshavarz S, et al. Histomorphometric evaluation of treatment of rat azoospermic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19:653–61.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wen Q, Wang Y, Tang J, Cheng CY, Liu YX. Sertoli cell Wt1 regulates peritubular myoid cell and fetal Leydig cell differentiation during fetal testis development. PLoS One. 2016;11:e0167920.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kotz S, Read CB, Balakrishnan N, Vidakovic B, Johnson NL. Encyclopedia of statistical sciences. 2nd ed. Hoboken, New Jersey: Wiley-Interscience; 2006.

    Google Scholar 

  29. 29.

    Chen X, Liang M, Wang D. Progress on the study of the mechanism of busulfan cytotoxicity. Cytotechnology. 2018;70:497–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Aboul Fotouh GI, Abdel-Dayem MM, Ismail DI, Mohamed HH. Histological study on the protective effect of endogenous stem cell mobilization in busulfan-induced testicular injury in albino rats. J Microsc Ultrastruct. 2018;6:197–204.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ghadially FN. Ultrastructural pathology of the cell and matrix: a text and atlas of physiological and pathological alterations in the fine structure of cellular and extracellular components. 3rd ed. New York: Elsevier; 2013.

    Google Scholar 

  32. 32.

    Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S. DNA intrastrand cross-link at the 50-GA-30 sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 2004;95:454–8.

    CAS  PubMed  Google Scholar 

  33. 33.

    Furukawa S, Usuda K, Abe M, Hayashi S, Ogawa I. Busulfan-induced apoptosis in rat placenta. Exp Toxicol Pathol. 2007;59:97–103.

    CAS  PubMed  Google Scholar 

  34. 34.

    Gutierrez K, Glanzner WG, Chemeris RO, Rigo ML, Comim FV, Bordignon V, et al. Gonadotoxic effects of busulfan in two strains of mice. Reprod Toxicol. 2016;59:31–9.

    CAS  PubMed  Google Scholar 

  35. 35.

    Qin Y, Liu L, He Y, Ma W, Zhu H, Liang M, et al. Testicular injection of busulfan for recipient preparation in transplantation of spermatogonial stem cells in mice. Reprod Fertil Dev. 2016;28:1916–25.

    CAS  PubMed  Google Scholar 

  36. 36.

    Bahmanpour S, Namavar Jahromi B, Koohpeyma F, Keshavarz M, Bakhtari A. Effects of different doses and time-dependency of busulfan on testes parameters and spermatogenesis in a rat model: a quantitative stereological study. JAMSAT. 2017;3:155–62.

    Google Scholar 

  37. 37.

    Cai Y, Liu T, Fang F, Shen S, Xiong C. Involvement of ICAM-1 in impaired spermatogenesis after busulfan treatment in mice. Andrologia. 2016;48:37–44.

    CAS  PubMed  Google Scholar 

  38. 38.

    Fang F, Ni K, Cai Y, Zhao Q, Shang J, Zhang X, et al. Busulfan administration produces toxic effects on epididymal morphology and inhibits the expression of ZO-1 and vimentin in the mouse epididymis. Biosci Rep. 2017;37:BSR20171059.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cai YT, Xiong CL, Shen SL, Rao JP, Liu TS, Qiu F. Mesenchymal stem cell-secreted factors delayed spermatogenesis injuries induced by busulfan involving intercellular adhesion molecule regulation. Andrologia. 2019;51:e13285.

    PubMed  Google Scholar 

  40. 40.

    Li B, He X, Zhuang M, Niu B, Wu C, Mu H, et al. Melatonin ameliorates busulfan-induced spermatogonial stem cell oxidative apoptosis in mouse testes. Antioxid Redox Signal. 2018;28:385–400.

    CAS  PubMed  Google Scholar 

  41. 41.

    Mitchell RN. The cell as a unit of health and disease. In: Kumar V, Abbas AK, Aster JC, editors. Robbins and cotran pathologic basis of disease. 10th ed. New York: Elsevier Health Sciences; 2018. p. 1–30.

    Google Scholar 

  42. 42.

    Meligy FY, Abo Elgheed AT, Alghareeb SM. Therapeutic effect of adipose-derived mesenchymal stem cells on Cisplatin induced testicular damage in adult male albino rat. Ultrastruct Pathol. 2019;43:28–55.

    PubMed  Google Scholar 

  43. 43.

    Sasso-Cerri E, Oliveira B, de Santi F, Beltrame FL, Caneguim BH, Cerri PS. The antineoplastic busulphan impairs peritubular and Leydig cells, and vitamin B12 stimulates spermatogonia proliferation and prevents busulphan-induced germ cell death. Biomed Pharmacother. 2017;95:1619–30.

    CAS  PubMed  Google Scholar 

  44. 44.

    Qu N, Itoh M, Sakabe K. Effects of chemotherapy and radiotherapy on spermatogenesis: the role of testicular immunology. Int J Mol Sci. 2019;20:957.

    CAS  PubMed Central  Google Scholar 

  45. 45.

    Anand S, Bhartiya D, Sriraman K, Mallick A. Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Rev Rep. 2016;12:682–97.

    CAS  PubMed  Google Scholar 

  46. 46.

    Atalla S, Saleh H, Abdel Gawad S, Mohamed H. Histological study on the effect of adipose tissue-derived mesenchymal stem cells on the testis of chemically induced castration model by calcium chloride in adult albino rats. Egypt J Histol. 2017;40:486–96.

    Google Scholar 

  47. 47.

    Hajihoseini M, Vahdati A, Ebrahim Hosseini S, Mehrabani D, Tamadon A. Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. Vet Arh. 2017;87:333–50.

    CAS  Google Scholar 

  48. 48.

    Aghamir SM, Salavati A, Yousefie R, Tootian Z, Ghazaleh N, Jamali M, et al. Does bone marrow-derived mesenchymal stem cell transfusion prevent antisperm antibody production after traumatic testis rupture? Urology. 2014;84:82–6.

    PubMed  Google Scholar 

  49. 49.

    Mehrabani D, Hassanshahi MA, Tamadon A, Zare S, Keshavarz S, Rahmanifar F, et al. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J Hum Reprod Sci. 2015;8:103–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chen H, Tang QL, Wu XY, Xie LC, Lin LM, Ho GY, et al. Differentiation of human umbilical cord mesenchymal stem cells into germ-like cells in mouse seminiferous tubules. Mol Med Rep. 2015;12:819–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med. 2019;8:1135–48.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Xiao GY, Liu IH, Cheng CC, Chang CC, Lee YH, Cheng WT, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One. 2014;9:e106538.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Antonucci I, Pantalone A, Tete S, Salini V, Borlongan CV, Hess D, et al. Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des. 2012;18:1846–63.

    CAS  PubMed  Google Scholar 

  54. 54.

    de Sousa Lopes SC, Roelen BA. Current status of in vitro differentiation of stem cells into gametes. Anim Reprod. 2018;12:46–51.

    Google Scholar 

  55. 55.

    Zhang D, Liu X, Peng J, He D, Lin T, Zhu J, et al. Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int J Mol Sci. 2014;15:13151–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Balbi C, Piccoli M, Barile L, Papait A, Armirotti A, Principi E, et al. First characterization of human amniotic fluid stem cell extracellular vesicles as a powerful paracrine tool endowed with regenerative potential. Stem Cells Transl Med. 2017;6:1340–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Balbi C, Lodder K, Costa A, Moimas S, Moccia F, van Herwaarden T, et al. Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. Int J Cardiol. 2019;287:87–95.

    PubMed  Google Scholar 

  58. 58.

    Morigi M, De Coppi P. Cell therapy for kidney injury: different options and mechanisms-mesenchymal and amniotic fluid stem cells. Nephron Exp Nephrol. 2014;126:59.

    CAS  PubMed  Google Scholar 

  59. 59.

    Abdelaziz MH, Salah El-Din EY, El-Dakdoky MH, Ahmed TA. The impact of mesenchymal stem cells on doxorubicin-induced testicular toxicity and progeny outcome of male prepubertal rats. Birth Defects Res. 2019;111:906–19.

    CAS  PubMed  Google Scholar 

  60. 60.

    Rajesh Kumar T, Doreswamy K, Shrilatha B. Oxidative stress associated DNA damage in testis of mice: induction of abnormal sperms and effects on fertility. Mutat Res. 2002;513:103–11.

    CAS  PubMed  Google Scholar 

  61. 61.

    Malekinejad H, Mirzakhani N, Razi M, Cheraghi H, Alizadeh A, Dardmeh F. Protective effects of melatonin and Glycyrrhizaglabra extract on ochratoxin. A-induced damages on testes in mature rats. Hum Exp Toxicol. 2011;30:110–23.

    CAS  PubMed  Google Scholar 

  62. 62.

    Monsefi M, Fereydouni B, Rohani L, Talaei T. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med. 2013;11:537–44.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, et al. Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biol Trace Elem Res. 2018;186:489–97.

    CAS  PubMed  Google Scholar 

  64. 64.

    Allah SH, Pasha HF, Abdelrahman AA, Mazen NF. Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Mol Cell Biochem. 2017;428:179–91.

    Google Scholar 

  65. 65.

    Ganjalikhan-Hakemi S, Sharififar F, Haghpanah T, Babaee A, Eftekhar-Vaghefi SH. The effects of olive leaf extract on the testis, sperm quality and testicular germ cell apoptosis in male rats exposed to busulfan. Int J Fertil Steril. 2019;13:57–65.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Vasiliausha SR, Beltrame FL, de Santi F, Cerri PS, Caneguim BH, Sasso-Cerri E. Seminiferous epithelium damage after short period of busulphan treatment in adult rats and vitamin B12 efficacy in the recovery of spermatogonial germ cells. Int J Exp Pathol. 2016;97:317–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hejazi S. Toxicity effect of cisplatin –treatment on rat testis tissue. J Mens Health. 2011;8:235.

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the technical help at the Center of Excellence for Research in Regenerative Medicine Applications (CERRMA), Alexandria Faculty of Medicine. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Contributions

HFI carried out the experimental work, designed the experiments, and wrote the manuscript. SHS and TMZ shared in the experimental design, performed the analytical part of the study, supervised the research, and revised the manuscript. KFEM and AYM optimized the experimental design and gave a conceptual advice. All authors read and approved the manuscript.

Corresponding author

Correspondence to Heba F. Ibrahim.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical statement

The animal study was performed after receiving approval of the Research Ethics Committee for care and use of laboratory animals, approval No. 0201162, IRB code 00012098, FWA code 00018699, membership of Alexandria University in the International Council of Laboratory Animal Science organization (ICLAS-https://www.hhs.gov/ohrp/assurances/index.html).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H.F., Safwat, S.H., Zeitoun, T.M. et al. The Therapeutic Potential of Amniotic Fluid-Derived Stem Cells on Busulfan-Induced Azoospermia in Adult Rats. Tissue Eng Regen Med 18, 279–295 (2021). https://doi.org/10.1007/s13770-020-00309-w

Download citation

Keywords

  • Amniotic fluid-derived stem cells
  • Busulfan
  • Azoospermia
  • Efferent ducts