Infusion of Human Mesenchymal Stem Cells Improves Regenerative Niche in Thioacetamide-Injured Mouse Liver



This study investigated whether xenotransplantation of human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) reduces thioacetamide (TAA)-induced mouse liver fibrosis and the underlying molecular mechanism.


Recipient NOD/SCID mice were injected intraperitoneally with TAA twice weekly for 6 weeks before initial administration of WJ-MSCs. Expression of regenerative and pro-fibrogenic markers in mouse fibrotic livers were monitored post cytotherapy. A hepatic stallate cell line HSC-T6 and isolated WJ-MSCs were used for in vitro adhesion, migration and mechanistic studies.


WJ-MSCs were isolated from human umbilical cords by an explant method and characterized by flow cytometry. A single infusion of WJ-MSCs to TAA-treated mice significantly reduced collagen deposition and ameliorated liver fibrosis after 2-week therapy. In addition to enhanced expression of hepatic regenerative factor, hepatocyte growth factor, and PCNA proliferative marker, WJ-MSC therapy significantly blunted pro-fibrogenic signals, including Smad2, RhoA, ERK. Intriguingly, reduction of plasma fibronectin (pFN) in fibrotic livers was noted in MSC-treated mice. In vitro studies further demonstrated that suspending MSCs triggered pFN degradation, soluble pFN conversely retarded adhesion of suspending MSCs onto type I collagen-coated surface, whereas pFN coating enhanced WJ-MSC migration across mimicked wound bed. Moreover, pretreatment with soluble pFN and conditioned medium from MSCs with pFN strikingly attenuated the response of HSC-T6 cells to TGF-β1-stimulation in Smad2 phosphorylation and RhoA upregulation.


These findings suggest that cytotherapy using WJ-MSCs may modulate hepatic pFN deposition for a better regenerative niche in the fibrotic livers and may constitute a useful anti-fibrogenic intervention in chronic liver diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Bissell DM. Hepatic fibrosis as wound repair: a progress report. J Gastroenterol. 1998;33:295–302.

    CAS  PubMed  Google Scholar 

  2. 2.

    Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta. 2006;364:33–60.

    CAS  PubMed  Google Scholar 

  3. 3.

    Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol. 1997;32:424–30.

    CAS  PubMed  Google Scholar 

  4. 4.

    Qian J, Niu M, Zhai X, Zhou Q, Zhou Y. β-Catenin pathway is required for TGF-β inhibition of PPARgamma expression in cultured hepatic stellate cells. Pharmacol Res. 2012;66:219–25.

    CAS  PubMed  Google Scholar 

  5. 5.

    Deng X, Deng L, Wang P, Cheng C, Xu K. Post-translational modification of CREB-1 decreases collagen I expression by inhibiting the TGF-β1 signaling pathway in rat hepatic stellate cells. Mol Med Rep. 2016;14:5751–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Okita K, Yamanaka S. Induction of pluripotency by defined factors. Exp Cell Res. 2010;316:2565–70.

    CAS  PubMed  Google Scholar 

  7. 7.

    McElreavey KD, Irvine AI, Ennis KT, McLean WH. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans. 1991;19:29S.

    CAS  PubMed  Google Scholar 

  8. 8.

    Takechi K, Kuwabara Y, Mizuno M. Ultrastructural and immunohistochemical studies of Wharton’s jelly umbilical cord cells. Placenta. 1993;14:235–45.

    CAS  PubMed  Google Scholar 

  9. 9.

    Kobayashi K, Kubota T, Aso T. Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev. 1998;51:223–33.

    CAS  PubMed  Google Scholar 

  10. 10.

    Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22:1330–7.

    Google Scholar 

  11. 11.

    Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, et al. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep. 2011;7:1–16.

    CAS  PubMed  Google Scholar 

  12. 12.

    Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. 2003;21:50–60.

    CAS  PubMed  Google Scholar 

  13. 13.

    Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. 2008;3:e1451.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med. 2006;18:1089–96.

    CAS  PubMed  Google Scholar 

  15. 15.

    Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, et al. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem. 2007;100:608–16.

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhang YN, Lie PC, Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy. 2009;11:548–58.

    CAS  PubMed  Google Scholar 

  17. 17.

    Anzalone R, Lo Iacono M, Corrao S, Magno F, Loria T, Cappello F, et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. 2010;19:423–38.

    CAS  PubMed  Google Scholar 

  18. 18.

    Tsai PC, Fu TW, Chen YM, Ko TL, Chen TH, Shih YH, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transpl. 2009;15:484–95.

    PubMed  Google Scholar 

  19. 19.

    Lin SZ, Chang YJ, Liu JW, Chang LF, Sun LY, Li YS, et al. Transplantation of human Wharton’s Jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant. 2010;19:1451–63.

    PubMed  Google Scholar 

  20. 20.

    Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology. 2004;40:1304–11.

    PubMed  Google Scholar 

  21. 21.

    Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology. 2007;45:213–22.

    CAS  PubMed  Google Scholar 

  22. 22.

    Sun CK, Chen CH, Kao YH, Yuen CM, Sheu JJ, Lee FY, et al. Bone marrow cells reduce fibrogenesis and enhance regeneration in fibrotic rat liver. J Surg Res. 2011;169:e15–26.

    CAS  PubMed  Google Scholar 

  23. 23.

    Sáez-Lara MJ, Frecha C, Martín F, Abadía F, Toscano M, Gil A, et al. Transplantation of human CD34+ stem cells from umbilical cord blood to rats with thioacetamide-induced liver cirrhosis. Xenotransplantation. 2006;13:529–35.

    PubMed  Google Scholar 

  24. 24.

    Kim YH, Cho KA, Park M, Kim HS, Park JW, Woo SY, et al. Conditioned medium from tonsil-derived mesenchymal stem cells relieves CCl4-induced liver fibrosis in mice. Tissue Eng Regen Med. 2019;16:51–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    De Bruyn C, Najar M, Raicevic G, Meuleman N, Pieters K, Stamatopoulos B, et al. A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from Wharton’s jelly without enzymatic treatment. Stem Cells Dev. 2011;20:547–57.

    PubMed  Google Scholar 

  26. 26.

    Chang CY, Chen PH, Li CJ, Lu SC, Lin YC, Lee PH, et al. Isolation and characterization of mesenchymal stem cells derived from human umbilical cord blood mononuclear cells. E-Da Medical Journal. 2016;3:1–13.

    CAS  Google Scholar 

  27. 27.

    Kao YH, Chen CL, Jawan B, Chung YH, Sun CK, Kuo SM, et al. Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis. J Hepatol. 2010;52:96–105.

    CAS  PubMed  Google Scholar 

  28. 28.

    Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979;11:447–55.

    CAS  PubMed  Google Scholar 

  29. 29.

    Goodman ZD, Becker RL Jr, Pockros PJ, Afdhal NH. Progression of fibrosis in advanced chronic hepatitis C: evaluation by morphometric image analysis. Hepatology. 2007;45:886–94.

    CAS  PubMed  Google Scholar 

  30. 30.

    Chang YC, Kao YH, Hu DN, Tsai LY, Wu WC. All-trans retinoic acid remodels extracellular matrix and suppresses laminin-enhanced contractility of cultured human retinal pigment epithelial cells. Exp Eye Res. 2009;88:900–9.

    CAS  PubMed  Google Scholar 

  31. 31.

    Wu WC, Lai YH, Hsieh MC, Chang YC, Wu MH, Wu HJ, et al. Pleiotropic role of atorvastatin in regulation of human retinal pigment epithelial cell behaviors in vitro. Exp Eye Res. 2011;93:842–51.

    CAS  PubMed  Google Scholar 

  32. 32.

    Kao YH, Chen PH, Wu TY, Lin YC, Tsai MS, Lee PH, et al. Lipopolysaccharides induce Smad2 phosphorylation through PI3K/Akt and MAPK cascades in HSC-T6 hepatic stellate cells. Life Sci. 2017;184:37–46.

    CAS  PubMed  Google Scholar 

  33. 33.

    Jiang Y, Xu W, Lu J, He F, Yang X. Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1. Biochem Biophys Res Commun. 2001;286:1123–30.

    CAS  PubMed  Google Scholar 

  34. 34.

    Sun XE, Zhang XQ, Liu MM. Effect of bone marrow mesenchymal stem cells on the TGF-β1/Smad signaling pathway of hepatic stellate. Genet Mol Res. 2015;14:8744–54.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ohara M, Ohnishi S, Hosono H, Yamamoto K, Yuyama K, Nakamura H, et al. Extracellular vesicles from amnion-derived mesenchymal stem cells ameliorate hepatic inflammation and fibrosis in rats. Stem Cells Int. 2018;2018:3212643.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Qin S, Jiang H, Su S, Wang D, Liang Z, Zhang J, et al. Inhibition of hepatic stellate cell proliferation by bone marrow mesenchymal stem cells via regulation of the cell cycle in rat. Exp Ther Med. 2012;4:375–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    An SY, Jang YJ, Lim HJ, Han J, Lee J, Lee G, et al. Milk fat globule-EGF factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology. 2017;152:1174–86.

    CAS  PubMed  Google Scholar 

  38. 38.

    Huang B, Cheng X, Wang H, Huang W, la Ga HuZ, Wang D, et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med. 2016;14:45.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Qiao H, Zhou Y, Qin X, Cheng J, He Y, Jiang Y. NADPH oxidase signaling pathway mediates mesenchymal stem cell-induced inhibition of hepatic stellate cell activation. Stem Cells Int. 2018;2018:1239143.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wang J, Sun M, Liu W, Li Y, Li M. Stem cell-based therapies for liver diseases: an overview and update. Tissue Eng Regen Med. 2019;16:107–18.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair. 2011;4:21.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Moretti FA, Chauhan AK, Iaconcig A, Porro F, Baralle FE, Muro AF. A major fraction of fibronectin present in the extracellular matrix of tissues is plasma-derived. J Biol Chem. 2007;282:28057–62.

    CAS  PubMed  Google Scholar 

  43. 43.

    Kwon AH, Inada Y, Uetsuji S, Yamamura M, Hioki K, Yamamoto M. Response of fibronectin to liver regeneration after hepatectomy. Hepatology. 1990;11:593–8.

    CAS  PubMed  Google Scholar 

  44. 44.

    Kwon AH, Uetsuji S, Yamamura M, Hioki K, Yamamoto M. Effect of administration of fibronectin or aprotinin on liver regeneration after experimental hepatectomy. Ann Surg. 1990;211:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Moriyama T, Aoyama H, Ohnishi S, Imawari M. Protective effects of fibronectin in galactosamine-induced liver failure in rats. Hepatology. 1986;6:1334–9.

    CAS  PubMed  Google Scholar 

  46. 46.

    Oh E, Pierschbacher M, Ruoslahti E. Deposition of plasma fibronectin in tissues. Proc Natl Acad Sci U S A. 1981;78:3218–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Pujades C, Forsberg E, Enrich C, Johansson S. Changes in cell surface expression of fibronectin and fibronectin receptor during liver regeneration. J Cell Sci. 1992;102:815–20.

    CAS  PubMed  Google Scholar 

  48. 48.

    Altrock E, Sens C, Wuerfel C, Vasel M, Kawelke N, Dooley S, et al. Inhibition of fibronectin deposition improves experimental liver fibrosis. J Hepatol. 2015;62:625–33.

    CAS  PubMed  Google Scholar 

  49. 49.

    De Luna-Saldivar MM, Marino-Martinez IA, Franco-Molina MA, Rivera-Morales LG, Alarcón-Galván G, Cordero-Pérez P, et al. Advantages of adipose tissue stem cells over CD34(+) mobilization to decrease hepatic fibrosis in Wistar rats. Ann Hepatol. 2019;18:620–6.

    PubMed  Google Scholar 

  50. 50.

    Cho IJ, Kim YW, Han CY, Kim EH, Anderson RA, Lee YS, et al. E-cadherin antagonizes transforming growth factor beta1 gene induction in hepatic stellate cells by inhibiting RhoA-dependent Smad3 phosphorylation. Hepatology. 2010;52:2053–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Eliazer S, Muncie JM, Christensen J, Sun X, D’Urso RS, Weaver VM, et al. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells. Cell Stem Cell. 2019;25:654–65.e4.

  52. 52.

    Bruck R, Hershkoviz R, Lider O, Aeed H, Zaidel L, Matas Z, et al. Inhibition of experimentally-induced liver cirrhosis in rats by a nonpeptidic mimetic of the extracellular matrix-associated Arg–Gly–Asp epitope. J Hepatol. 1996;24:731–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Hayes-Jordan A, Wang YX, Walker P, Cox CS. Mesenchymal stromal cell dependent regression of pulmonary metastasis from Ewing’s. Front Pediatr. 2014;2:44.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Barker EA, Smuckler EA. Nonhepatic thioacetamide injury. II. The morphologic features of proximal renal tubular injury. Am J Pathol. 1974;74:575–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors would like to dedicate this article to late Professor Daniel Tzu-Bi Shih in memory of his earnestness and generosity in disseminating his knowledge and sharing his expertise with his fellow researchers. This study was supported by the Grants from E-Da Hospital (EDAHP102043 to CYC; NCKUEDA10513 to YHK; EDAHT107047 to CKS). YHK, CYC and CKS conceived the study, supervised the experiments and finalized the draft. YHK and YCL wrote the paper. YCL, CWL and PHC performed the experiments. PHL, TST, YCC, and MHC contributed to analysis tools and analyzed the data. All authors have reviewed the manuscript and approved submission.

Author information




YHK, CYC and CKS conceived the study, supervised the experiments and finalized the draft. YHK and YCL wrote the paper. YCL, CWL and PHC performed the experiments. PHL, TST, YCC, and MHC contributed to analysis tools and analyzed the data. All authors have reviewed the manuscript and approved submission.

Corresponding authors

Correspondence to Chih-Yang Chang or Cheuk-Kwan Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study protocol was approved by the institutional reviewing board of E-Da Hospital (IRB No. EMRP26100N). Informed consent was confirmed by the IRB. The animal studies were performed after receiving approval of the Institutional Animal Care and Use Committee at E-Da Hospital (IACUC Approval No. IACUC-101017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kao, Y., Lin, Y., Lee, P. et al. Infusion of Human Mesenchymal Stem Cells Improves Regenerative Niche in Thioacetamide-Injured Mouse Liver. Tissue Eng Regen Med (2020).

Download citation


  • Human umbilical cord
  • Hepatotoxin
  • Liver fibrosis
  • Plasma fibronectin
  • Wharton’s jelly tissue