Tissue Engineering and Regenerative Medicine

, Volume 16, Issue 6, pp 645–652 | Cite as

Bladder Augmentation Using Lyoplant®: First Experimental Results in Rats

  • F. Winde
  • K. Backhaus
  • J. A. Zeitler
  • N. Schlegel
  • Th. MeyerEmail author
Original Article



Congenital defects of the urinary bladder (micro- or contracted bladder, bladder exstrophy) remain a challenging problem for pediatric surgeons. Even when conservative treatment options are fully exhausted, irreversible renal dysfunction can be observed in a large number of cases that can even lead to chronic renal failure and the need for kidney transplantation. To protect kidney function bladder augmentation using intestinal tissue is commonly applied as the standard treatment method. However due to the unphysiological nature of intestinal tissue a number of problems and complications such as urinary tract infections or bladder stone formation limit the clinical success of this approach. Moreover a number of substitutes for the implementation of a bladder augmentation have been tested without success to date. Here we used an experimental model to test wether the biocompatible collagen mesh Lyoplant may be a suitable candidate for bladder augmentation.


We implanted a biocompatible collagen mesh (Lyoplant®) in a bladder defect rat model for bladder augmentation (Lyoplant®-group: n = 12; sham group n = 4). After 6 weeks the abdomen was reopened and the initial implant as well as the bladder were resected for histological and immunohistochemical examination.


All but one rat exhibited physiological growth and behaviour after the operation without differences between the Lyoplant®-group (n = 12) and the sham group (n = 3). One rat from the sham group had to be excluded because of a suture leakage. No wound healing complications, wound infections and no herniation were observed. After 5 weeks the implants showed an adequate incorporation in all cases. This was confirmed by immunohistological analyses where a significant cell infiltration and neovascularization was observed.


In summary, Lyoplant® appears to be a promising tool in experimental bladder augmentation/regeneration in rats.


Biocompatible collagen mesh Bladder regeneration/augmentation Rat model 



The author’s thanks Mrs. Chodnesvska for the technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study was performed according to a protocol approved by the local committee for animal use and care (Regierung von Unterfranken: 55.2-2531.01-01/12).


  1. 1.
    Langer S, Radtke C, Györi E, Springer A, Metzelder ML. Bladder augmentation in children: current problems and experimental strategies for reconstruction. Wien Med Wochenschr. 2019;169:61–70.CrossRefGoogle Scholar
  2. 2.
    Ferrer F, Gearhart JP. Bladder exstrophy: considerations and management of the newborn patient. In: Puri P, editor. Newborn Surgery. Oxford: Oxford University Press; 2003. p. 619–27.CrossRefGoogle Scholar
  3. 3.
    Pokrywczynska M, Adamowicz J, Sharma AK, Drewa T. Human urinary bladder regeneration through tissue engineering: an analysis of 131 clinical cases. Exp Biol Med (Maywood). 2014;239:264–71.CrossRefGoogle Scholar
  4. 4.
    Diamond DA, Chan IHY, Holland AJA, Kurtz MP, Nelson C, Estrada CR Jr, et al. Advances in paediatric urology. Lancet. 2017;390:1061–71.CrossRefGoogle Scholar
  5. 5.
    Hoen L’, Ecclestone H, Blok BFM, Karsenty G, Phé V, Bossier R, et al. Long-term effectiveness and complication rates of bladder augmentation in patients with neurogenic bladder dysfunction: a systematic review. Neurourol Urodyn. 2017;36:1685–702.CrossRefGoogle Scholar
  6. 6.
    Smeulders N, Woodhouse CR. Neoplasia in adult exstrophy patients. BJU Int. 2001;87:623–8.CrossRefGoogle Scholar
  7. 7.
    Kollhoff DM, Cheng EY, Sharma AK. Urologic applications of engineered tissue. Regen Med. 2011;6:757–65.CrossRefGoogle Scholar
  8. 8.
    Meyer T, Meyer B, Schwarz K, Höcht B. Immune response to xenogeneic matrix grafts used in pediatric surgery. Eur J Pediatr Surg. 2007;17:420–5.CrossRefGoogle Scholar
  9. 9.
    Meyer T, Schwarz K, Ulrichs K, Höcht B. A new biocompatible material (Lyoplant) for the therapy of congenital abdominal wall defects: first experimental results in rats. Pediatr Surg Int. 2006;22:369–74.CrossRefGoogle Scholar
  10. 10.
    Meyer T, Seifert A, Meyer B, Ulrichs K, Germer CT. PAUL procedure. A new biocompatible concept for the therapy of congenital abdominal wall defects. Chirurg. 2010;81:236–42.CrossRefGoogle Scholar
  11. 11.
    Schaefer M, Kaiser A, Stehr M, Beyer HJ. Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol. 2013;9:878–83.CrossRefGoogle Scholar
  12. 12.
    Ayyildiz A, Nuhoglu B, Huri E, Ozer E, Gurdal M, Germiyanoglu C. Using porcine acellular collagen matrix (Pelvicol) in bladder augmentation: experimental study. Int Braz J Urol. 2006;32:88–92.CrossRefGoogle Scholar
  13. 13.
    AG, B.B.M. Lyoplant. 2015; Available from:
  14. 14.
    Kouame BD, Kouame GS, Sounkere M, Koffi M, Yaokreh JB, Odehouri-Koudou T, et al. Aesthetic, urological, orthopaedic and functional outcomes in complex bladder exstrophy-epispadias’s management. Afr J Paediatr Surg. 2015;12:56–60.CrossRefGoogle Scholar
  15. 15.
    Bertin KD, Serge KY, Moufidath S, Maxime K, Hervé OK, Baptiste YJ, et al. Complex bladder-exstrophy-epispadias management: causes of failure of initial bladder closure. Afr J Paediatr Surg. 2014;11:334–40.CrossRefGoogle Scholar
  16. 16.
    Inouye BM, Tourchi A, Di Carlo HN, Young EE, Gearhart JP. Modern management of the exstrophy-epispadias complex. Surg Res Pract. 2014;2014:587064.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Woodhouse CR, North AC, Gearhart JP. Standing the test of time: long-term outcome of reconstruction of the exstrophy bladder. World J Urol. 2006;24:244–9.CrossRefGoogle Scholar
  18. 18.
    Gearhart JP, Ben-Chaim J, Sciortino C, Sponseller PD, Jeffs RD. The multiple reoperative bladder exstrophy closure: what affects the potential of the bladder? Urology. 1996;47:240–3.CrossRefGoogle Scholar
  19. 19.
    Hesh CA, Young E, Intihar P, Gearhart JP. The cost of failure: the economic impact of failed primary closure in classic bladder exstrophy. J Pediatr Surg. 2016;51:1312–6.CrossRefGoogle Scholar
  20. 20.
    Stein R, Hohenfellner M, Pahernik S, Roth S, Thüroff JW, Rübben H. Übersichtsarbeit-Therapiekonzepte und Konsequenzen der Harnableitung. Dtsch Arztebl Ausg A. 2012;109:617–22.Google Scholar
  21. 21.
    El-Taji OM, Khattak AQ, Hussain SA. Bladder reconstruction: the past, present and future. Oncol Lett. 2015;10:3–10.CrossRefGoogle Scholar
  22. 22.
    Wünsch L, Ehlers EM, Russlies M. Matrix testing for urothelial tissue engineering. Eur J Pediatr Surg. 2005;15:164–9.CrossRefGoogle Scholar
  23. 23.
    Cranidis A, Nestoridis G, Delakas D, Lumbakis P, Kanavaros P. Bladder autoaugmentation in the rabbit using de-epithelialized segments of small intestine, stomach and lyophilized human dura mater. Br J Urol. 1998;81:62–7.CrossRefGoogle Scholar
  24. 24.
    Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, et al. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials. 2007;28:1061–70.CrossRefGoogle Scholar
  25. 25.
    Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods. 2010;16:1201–11.CrossRefGoogle Scholar
  26. 26.
    Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001;71:1631–40.CrossRefGoogle Scholar
  27. 27.
    Kaufmann SHE. T-Zellen. In: Kaufmann SHE, editor. Basiswissen immunologie. Berlin: Springer; 2014. p. 63–83.CrossRefGoogle Scholar
  28. 28.
    Gulbins E, Lang KS. Immunsystem. In: Schmidt RF, Lang F, Heckmann M, editors. Physiologie des menschen. Berlin: Springer; 2007. p. 550–62.CrossRefGoogle Scholar
  29. 29.
    Roelofs LA, Kortmann BB, Oosterwijk E, Eggink AJ, Tiemessen DM, Crevels AJ, et al. Tissue engineering of diseased bladder using a collagen scaffold in a bladder exstrophy model. BJU Int. 2014;114:447–57.PubMedGoogle Scholar
  30. 30.
    Leonhäuser D, Stollenwerk K, Seifarth V, Zraik IM, Vogt M, Srinivasan PK, et al. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model. J Transl Med. 2017;15:3.CrossRefGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society 2019

Authors and Affiliations

  • F. Winde
    • 1
  • K. Backhaus
    • 1
  • J. A. Zeitler
    • 2
  • N. Schlegel
    • 3
  • Th. Meyer
    • 1
    Email author
  1. 1.Pediatric Surgery-, Pediatric Trauma - and Pediatric Urology Unit, Department of General-, Visceral-, Transplant-, Vascular- and Pediatric SurgeryUniversity Hospital WuerzburgWürzburgGermany
  2. 2.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  3. 3.Experimental Surgery Unit, Department of General-, Visceral-, Transplant-, Vascular- and Pediatric SurgeryUniversity of WuerzburgWürzburgGermany

Personalised recommendations