Cancer Conditioned Medium Modulates Functional and Phenotypic Properties of Human Decidua Parietalis Mesenchymal Stem/Stromal Cells

  • E. Bahattab
  • T. Khatlani
  • F. M. AbomarayEmail author
  • S. A. Messaoudi
  • M. H. AbumareeEmail author
Original Article



Mesenchymal Stem/Stromal Cells (MSCs) from the decidua parietalis (DPMSCs) of human term placenta express several molecules with important biological and immunological properties. DPMSCs induce natural killer cell expression of inflammatory receptors and their cytotoxic activity against cancer cells. These properties make DPMSCs promising therapeutical agent for cancer. The successful development of MSCs as an anti-cancer therapeutic cells rely on their ability to function in a hostile inflammatory and oxidative stress cancer environment. Here, we studied the effects of conditioned medium obtained from the culture of breast cancer cells (CMMDA-231) on the functional and phenotypic properties of DPMSCs.


DPMSCs were cultured with CMMDA-231 and important functions of DPMSCs were measured. The effect of CMMDA-231 on DPMSC expression of several genes with different functions was also evaluated.


DPMSCs were able to function in response to CMMDA-231, but with reduced proliferative and adhesive potentials. Preconditioning of DPMSCs with CMMDA-231 enhanced their adhesion while reducing their invasion. In addition, CMMDA-231 modulated DPMSC expression of many genes with various functional (i.e., proliferation, adhesion, and invasion) properties. DPMSCs also showed increased expression of genes with anti-cancer property.


These data show the ability of DPMSCs to survive and function in cancer environment. In addition, preconditioning of DPMSCs with CMMDA-231 enhanced their anti-cancer properties and thus demonstrating their potential as an anti-cancer therapeutic agent. However, future studies are essential to reveal the mechanism underlying the effects of MDA-231 on DPMSC functional activities and also to confirm the anti-cancer therapeutic potential of DPMSCs.


Proliferation Adhesion Migration Invasion Gene expression 



We appreciate the staff and patients of King Abdul Aziz Medical City for providing us with placentae. MHA proposed and supervised the project. MHA designed the experiments. EB performed the experiments. MHA, EB and TK analysed the data. MHA wrote the manuscript. MHA, FMA, TK, and SAM contributed to data analysis and interpretation of results. All authors reviewed the manuscript. This study was supported by Grants from KAIMRC (Grant No. RC12/133).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

IRB of KAIMRC approved this study (IRBC/1187/17). Samples (Placentae and umbilical cords) were obtained after signing consent forms.


  1. 1.
    Abumaree MH, Abomaray FM, Alshehri NA, Almutairi A, AlAskar AS, Kalionis B, et al. Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua parietalis of human term placenta. Reprod Sci. 2016;23:1193–207.CrossRefPubMedGoogle Scholar
  2. 2.
    Brandstadter JD, Yang Y. Natural killer cell responses to viral infection. J Innate Immun. 2011;3:274–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abumaree MH, Bahattab E, Alsadoun A, Al Dosaimani A, Abomaray FM, Khatlani T, et al. Characterization of the interaction between human decidua parietalis mesenchymal stem/stromal cells and natural killer cells. Stem Cell Res Ther. 2018;9:102.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Uchibori R, Okada T, Ito T, Urabe M, Mizukami H, Kume A, et al. Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med. 2009;11:373–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Arnold KM, Opdenaker LM, Flynn D, Sims-Mourtada J. Wound healing and cancer stem cells: inflammation as a driver of treatment resistance in breast cancer. Cancer Growth Metastasis. 2015;8:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, et al. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci. 2013;3:5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol Cell Biol. 2013;91:12–8.CrossRefPubMedGoogle Scholar
  8. 8.
    English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol. 2013;91:19–26.CrossRefPubMedGoogle Scholar
  9. 9.
    Alphonso A, Alahari SK. Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia. 2009;11:1264–71.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee SH, Jeong D, Han YS, Baek MJ. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res. 2015;89:1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B. 2015;5:402–18.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci. 2017;108:1939–46.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Alshabibi MA, Al Huqail AJ, Khatlani T, Abomaray FM, Alaskar AS, Alawad AO, et al. Mesenchymal stem/multipotent stromal cells from human decidua basalis reduce endothelial cell activation. Stem Cells Dev. 2017;26:1355–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev. 2013;9:620–41.CrossRefGoogle Scholar
  15. 15.
    Alshabibi MA, Khatlani T, Abomaray FM, AlAskar AS, Kalionis B, Messaoudi SA, et al. Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther. 2018;9:275.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Abumaree MH, Hakami M, Abomaray FM, Alshabibi MA, Kalionis B, Al Jumah MA, et al. Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions. Placenta. 2017;59:74–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Basmaeil YS, Al Subayyil AM, Khatlani T, Bahattab E, Al-Alwan M, Abomaray FM, et al. Human chorionic villous mesenchymal stem/stromal cells protect endothelial cells from injury induced by high level of glucose. Stem Cell Res Ther. 2018;9:238.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Abomaray FM, Al Jumah MA, Alsaad KO, Jawdat D, Al Khaldi A, AlAskar AS, et al. Phenotypic and functional characterization of mesenchymal stem/multipotent stromal cells from decidua basalis of human term placenta. Stem Cells Int. 2016;2016:5184601.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Khatlani T, Algudiri D, Alenzi R, Al Subayyil AM, Abomaray FM, Bahattab E, et al. Preconditioning by hydrogen peroxide enhances multiple properties of human decidua basalis mesenchymal stem/multipotent stromal cells. Stem Cells Int. 2018;2018:6480793.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling components of the tumor microenvironment to enhance cancer therapy. Front Oncol. 2015;5:214.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Escobar P, Bouclier C, Serret J, Bièche I, Brigitte M, Caicedo A, et al. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production. Oncotarget. 2015;6:29034–47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lieblein JC, Ball S, Hutzen B, Sasser AK, Lin HJ, Huang TH, et al. STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer. 2008;8:302.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Freund A, Chauveau C, Brouillet JP, Lucas A, Lacroix M, Licznar A, et al. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene. 2003;22:256–65.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bachmeier BE, Nerlich AG, Lichtinghagen R, Sommerhoff CP. Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity. Anticancer Res. 2001;21:3821–8.PubMedGoogle Scholar
  25. 25.
    Shen J, Xu S, Zhou H, Liu H, Jiang W, Hao J, et al. IL-1β induces apoptosis and autophagy via mitochondria pathway in human degenerative nucleus pulposus cells. Sci Rep. 2017;7:41067.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Thirumangalakudi L, Yin L, Rao HV, Grammas P. IL-8 induces expression of matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell death in cultured neurons. J Alzheimers Dis. 2007;11:305–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Oh YS, Lee YJ, Park EY, Jun HS. Interleukin-6 treatment induces beta-cell apoptosis via STAT-3-mediated nitric oxide production. Diabetes Metab Res Rev. 2011;27:813–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Tan RJ, Fattman CL, Niehouse LM, Tobolewski JM, Hanford LE, Li Q, et al. Matrix metalloproteinases promote inflammation and fibrosis in asbestos-induced lung injury in mice. Am J Respir Cell Mol Biol. 2006;35:289–97.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Raijmakers MT, Roes EM, Poston L, Steegers EA, Peters WH. The transient increase of oxidative stress during normal pregnancy is higher and persists after delivery in women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2008;138:39–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25:287–99.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, et al. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007;67:9142–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang W, Xu J, Fang H, Tang L, Chen W, Sun Q, et al. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling. FASEB J. 2018;32:276–88.CrossRefPubMedGoogle Scholar
  33. 33.
    Morgan H, Tumber A, Hill PA. Breast cancer cells induce osteoclast formation by stimulating host IL-11 production and downregulating granulocyte/macrophage colony-stimulating factor. Int J Cancer. 2004;109:653–60.CrossRefPubMedGoogle Scholar
  34. 34.
    Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol. 1992;148:1143–8.PubMedGoogle Scholar
  35. 35.
    Kouri FM, Queisser MA, Königshoff M, Chrobak I, Preissner KT, Seeger W, et al. Plasminogen activator inhibitor type 1 inhibits smooth muscle cell proliferation in pulmonary arterial hypertension. Int J Biochem Cell Biol. 2008;40:1872–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee H, Kang JE, Lee JK, Bae JS, Jin HK. Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther. 2013;24:655–69.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bo S, Donghao S, Guangqi K, Ye T. CC chemokine ligand 18 promotes cell proliferation and metastasis of urothelial carcinoma via activating PI3 K/mTOR signaling in patient with renal transplantation. Urol Int. 2018;101:450–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Lu E, Su J, Zhou Y, Zhang C, Wang Y. CCL20/CCR39 promotes cell proliferation and metastasis in laryngeal cancer by activating p38 pathway. Biomed Pharmacother. 2017;85:486–92.CrossRefPubMedGoogle Scholar
  39. 39.
    Or R, Renz H, Terada N, Gelfand EW. IL-4 and IL-2 promote human T-cell proliferation through symmetrical but independent pathways. Clin Immunol Immunopathol. 1992;64:210–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Li B, Jones LL, Geiger TL. IL-6 promotes T cell proliferation and expansion under inflammatory conditions in association with low-level RORγt expression. J Immunol. 2018;201:2934–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Li WQ, Jiang Q, Aleem E, Kaldis P, Khaled AR, Durum SK. IL-7 promotes T cell proliferation through destabilization of p27Kip1. J Exp Med. 2006;203:573–82.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mahindra A, Anderson KC. Role of interleukin 16 in multiple myeloma pathogenesis: a potential novel therapeutic target? J Natl Cancer Inst. 2012;104:964–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Jeong W, Kim J, Bazer FW, Song G. Proliferation-stimulating effect of colony stimulating factor 2 on porcine trophectoderm cells is mediated by activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. PLoS One. 2014;9:e88731.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang JG, Wang WM, Xia HF, Yu ZL, Li HM, Ren JG, et al. Lymphotoxin-alpha promotes tumor angiogenesis in HNSCC by modulating glycolysis in a PFKFB3-dependent manner. Int J Cancer. 2019;145:1358–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Kaser A, Brandacher G, Steurer W, Kaser S, Offner FA, Zoller H, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood. 2001;98:2720–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang XH, Hong X, Zhu L, Wang YT, Bao JP, Liu L, et al. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Exp Biol Med (Maywood). 2015;240:411–7.CrossRefGoogle Scholar
  47. 47.
    Zeng FC, Zeng MQ, Huang L, Li YL, Gao BM, Chen JJ, et al. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. Onco Targets Ther. 2016;9:2131–41.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006;4:48.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Paiva P, Salamonsen LA, Manuelpillai U, Walker C, Tapia A, Wallace EM, et al. Interleukin-11 promotes migration, but not proliferation, of human trophoblast cells, implying a role in placentation. Endocrinology. 2007;148:5566–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Shao J, Zhang B, Yu JJ, Wei CY, Zhou WJ, Chang KK, et al. Macrophages promote the growth and invasion of endometrial stromal cells by downregulating IL-24 in endometriosis. Reproduction. 2016;152:673–82.CrossRefPubMedGoogle Scholar
  51. 51.
    Brandacher G, Winkler C, Schroecksnadel K, Margreiter R, Fuchs D. Antitumoral activity of interferon-gamma involved in impaired immune function in cancer patients. Curr Drug Metab. 2006;7:599–612.CrossRefPubMedGoogle Scholar
  52. 52.
    Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM. Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. J Cell Sci. 2011;124:1288–300.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke. 2002;33:2115–22.CrossRefPubMedGoogle Scholar
  54. 54.
    Mostafa Mtairag E, Chollet-Martin S, Oudghiri M, Laquay N, Jacob MP, Michel JB, et al. Effects of interleukin-10 on monocyte/endothelial cell adhesion and MMP-9/TIMP-1 secretion. Cardiovasc Res. 2001;49:882–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Shah AK, Lazatin J, Sinha RK, Lennox T, Hickok NJ, Tuan RS. Mechanism of BMP-2 stimulated adhesion of osteoblastic cells to titanium alloy. Biol Cell. 1999;91:131–42.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang J, Patel JM. Role of the CX3CL1-CX3CR57 axis in chronic inflammatory lung diseases. Int J Clin Exp Med. 2010;3:233–44.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu X, Xu X, Deng W, Huang M, Wu Y, Zhou Z, et al. CCL18 enhances migration, invasion and EMT by binding CCR58 in bladder cancer cells. Mol Med Rep. 2019;19:1678–86.PubMedGoogle Scholar
  58. 58.
    Im KS, Graef AJ, Breen M, Lindblad-Toh K, Modiano JF, Kim JH. Interactions between CXCR59 and CXCL12 promote cell migration and invasion of canine hemangiosarcoma. Vet Comp Oncol. 2017;15:315–27.CrossRefPubMedGoogle Scholar
  59. 59.
    Xu X, Huang P, Yang B, Wang X, Xia J. Roles of CXCL5 on migration and invasion of liver cancer cells. J Transl Med. 2014;12:193.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mori M, Morris SC, Orekhova T, Marinaro M, Giannini E, Finkelman FD. IL-4 promotes the migration of circulating B cells to the spleen and increases splenic B cell survival. J Immunol. 2000;164:5704–12.CrossRefPubMedGoogle Scholar
  61. 61.
    Ferland C, Flamand N, Davoine F, Chakir J, Laviolette M. IL-16 activates plasminogen-plasmin system and promotes human eosinophil migration into extracellular matrix via CCR62-chemokine-mediated signaling and by modulating CD4 eosinophil expression. J Immunol. 2004;17:4417–24.CrossRefPubMedGoogle Scholar
  62. 62.
    Panneerselvam J, Jin J, Shanker M, Lauderdale J, Bates J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR63 signaling axis. PLoS One. 2015;10:e0122439.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wolczyk D, Zaremba-Czogalla M, Hryniewicz-Jankowska A, Tabola R, Grabowski K, Sikorski AF, et al. TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol (Dordr). 2016;39:353–63.CrossRefGoogle Scholar
  64. 64.
    Jin H, Pi J, Huang X, Huang F, Shao W, Li S, et al. BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol. 2012;93:1715–23.CrossRefPubMedGoogle Scholar
  65. 65.
    Hsu CJ, Wu MH, Chen CY, Tsai CH, Hsu HC, Tang CH. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma. Cell Commun Signal. 2013;11:68.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lee S, Lee E, Ko E, Ham M, Lee HM, Kim ES, et al. Tumor-associated macrophages secrete CCL2 and induce the invasive phenotype of human breast epithelial cells through upregulation of ERO1-α and MMP-9. Cancer Lett. 2018;437:25–34.CrossRefPubMedGoogle Scholar
  67. 67.
    Sun W, Liu DB, Li WW, Zhang LL, Long GX, Wang JF, et al. Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. Int J Oncol. 2014;44:1551–60.CrossRefPubMedGoogle Scholar
  68. 68.
    Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR69. Cancer Res. 2002;62:7203–6.PubMedGoogle Scholar
  69. 69.
    Paiva P, Salamonsen LA, Manuelpillai U, Dimitriadis E. Interleukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during placentation. Biol Reprod. 2009;80:302–10.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    de Jager SC, Bot I, Kraaijeveld AO, Korporaal SJ, Bot M, van Santbrink PJ, et al. Leukocyte-specific CCL3 deficiency inhibits atherosclerotic lesion development by affecting neutrophil accumulation. Arterioscler Thromb Vasc Biol. 2013;33:e75–83.CrossRefPubMedGoogle Scholar
  71. 71.
    Mehraj V, Ramendra R, Isnard S, Dupuy FP, Lebouché B, Costiniuk C, et al. CXCL13 as a biomarker of immune activation during early and chronic HIV infection. Front Immunol. 2019;10:289.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Marshall A, Celentano A, Cirillo N, McCullough M, Porter S. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease. PLoS One. 2017;12:e0172821.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, et al. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res. 2015;4:F1000.CrossRefGoogle Scholar
  74. 74.
    Park S, Cheon S, Cho D. The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol. 2007;4:329–35.PubMedGoogle Scholar
  75. 75.
    Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, et al. BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A. 2013;19:2390–401.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Hermann JA, Hall MA, Maini RN, Feldmann M, Brennan FM. Important immunoregulatory role of interleukin-11 in the inflammatory process in rheumatoid arthritis. Arthritis Rheum. 1998;41:1388–97.CrossRefPubMedGoogle Scholar
  77. 77.
    Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, et al. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS One. 2014;9:e91574.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Damås JK, Landrø L, Fevang B, Heggelund L, Tjønnfjord GE, Fløisand Y, et al. Homeostatic chemokines CCL19 and CCL21 promote inflammation in human immunodeficiency virus-infected patients with ongoing viral replication. Clin Exp Immunol. 2009;157:400–7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    De Plaen IG, Han XB, Liu X, Hsueh W, Ghosh S, May MJ. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor. Immunology. 2006;118:153–63.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hartgring SA, Willis CR, Bijlsma JW, Lafeber FP, van Roon JA. Interleukin-7-aggravated joint inflammation and tissue destruction in collagen-induced arthritis is associated with T-cell and B-cell activation. Arthritis Res Ther. 2012;14:R137.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mathy NL, Scheuer W, Lanzendörfer M, Honold K, Ambrosius D, Norley S, et al. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology. 2000;100:63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Etemadi N, Holien JK, Chau D, Dewson G, Murphy JM, Alexander WS, et al. Lymphotoxin alpha induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS J. 2013;280:5283–97.CrossRefPubMedGoogle Scholar
  83. 83.
    Ham B, Fernandez MC, D’Costa Z, Brodt P. The diverse roles of the TNF axis in cancer progression and metastasis. Trends Cancer Res. 2016;11:1–27.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Linker RA, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, et al. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med. 2002;8:620–4.CrossRefPubMedGoogle Scholar
  85. 85.
    Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, et al. Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol. 2011;179:1243–56.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Viel S, Marçais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016;9:ra19.CrossRefPubMedGoogle Scholar
  87. 87.
    Allen F, Rauhe P, Askew D, Tong AA, Nthale J, Eid S, et al. CCL3 enhances antitumor immune priming in the lymph node via IFNgamma with dependency on natural killer cells. Front Immunol. 2017;8:1390.Google Scholar
  88. 88.
    Ma H, Jin S, Yang W, Tian Z, Liu S, Wang Y, et al. Interferon-α promotes the expression of cancer stem cell markers in oral squamous cell carcinoma. J Cancer. 2017;8:2384–93.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lee HL, Park MH, Song JK, Jung YY, Kim Y, Kim KB, et al. Tumor growth suppressive effect of IL-4 through p21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models. Oncotarget. 2016;7:23425–38.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Qin Z, van Tits LJ, Buurman WA, Blankenstein T. Human lymphotoxin has at least equal antitumor activity in comparison to human tumor necrosis factor but is less toxic in mice. Blood. 1995;85:2779–85.CrossRefPubMedGoogle Scholar
  91. 91.
    Hofmann A, Blau HM. Death of solid tumor cells induced by Fas ligand expressing primary myoblasts. Somat Cell Mol Genet. 1997;23:249–57.CrossRefPubMedGoogle Scholar
  92. 92.
    Razidlo GL, Burton KM, McNiven MA. Interleukin-6 promotes pancreatic cancer cell migration by rapidly activating the small GTPase CDC42. J Biol Chem. 2018;293:11143–53.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Silva A, Laranjeira AB, Martins LR, Cardoso BA, Demengeot J, Yunes JA, et al. IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res. 2011;71:4780–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Ara T, Declerck YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer. 2010;46:1223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhu Z, Zhang X, Guo H, Fu L, Pan G, Sun Y. CXCL13-CXCR96 axis promotes the growth and invasion of colon cancer cells via PI3 K/AKT pathway. Mol Cell Biochem. 2015;400:287–95.CrossRefPubMedGoogle Scholar
  96. 96.
    Li H, Meng YH, Shang WQ, Liu LB, Chen X, Yuan MM, et al. Chemokine CCL24 promotes the growth and invasiveness of trophoblasts through ERK1/2 and PI3K signaling pathways in human early pregnancy. Reproduction. 2015;150:417–27.CrossRefPubMedGoogle Scholar
  97. 97.
    Hu W, Liu Y, Zhou W, Si L, Ren L. CXCL16 and CXCR98 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro. PLoS One. 2014;9:e99056.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    DeWitt J, Pappas A, Nishi R. Ciliary neurotrophic factor reduces the proliferation and promotes the differentiation of TH-MYCN transformed sympathoadrenal progenitors. Dev Neurosci. 2014;36:422–31.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wang MH, Zhou XM, Zhang MY, Shi L, Xiao RW, Zeng LS, et al. BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway. Aging (Albany NY). 2017;9:1326–40.CrossRefGoogle Scholar
  100. 100.
    Zong M, Lu T, Fan S, Zhang H, Gong R, Sun L, et al. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther. 2015;17:100.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF, Pinedo HM. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 2000;96:4216–21.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society 2019

Authors and Affiliations

  1. 1.National Center for Stem Cell Technology, Life Sciences and Environment Research InstituteKing Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia
  2. 2.Stem Cells and Regenerative Medicine DepartmentKing Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health AffairsRiyadhSaudi Arabia
  3. 3.Department of Clinical Science, Intervention and Technology, Division of Obstetrics and GynecologyKarolinska InstitutetStockholmSweden
  4. 4.Department of Forensic Biology, College of Forensic SciencesNaif Arab University for Security SciencesRiyadhSaudi Arabia
  5. 5.College of Science and Health ProfessionsKing Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health AffairsRiyadhSaudi Arabia

Personalised recommendations