Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodeficiency Mice: Preclinical Study

  • Mari Paz QuesadaEmail author
  • David García-Bernal
  • Diego Pastor
  • Alicia Estirado
  • Miguel Blanquer
  • Ana Mª García-Hernández
  • José M. Moraleda
  • Salvador Martínez
Original Article



Mesenchymal stromal cells (MSCs) have potent immunomodulatory and neuroprotective properties, and have been tested in neurodegenerative diseases resulting in meaningful clinical improvements. Regulatory guidelines specify the need to perform preclinical studies prior any clinical trial, including biodistribution assays and tumourigenesis exclusion. We conducted a preclinical study of human bone marrow MSCs (hBM-MSCs) injected by intrathecal route in Non-Obese Diabetic Severe Combined Immunodeficiency mice, to explore cellular biodistribution and toxicity as a privileged administration method for cell therapy in Friedreich’s Ataxia.


For this purpose, 3 × 105 cells were injected by intrathecal route in 12 animals (experimental group) and the same volume of culture media in 6 animals (control group). Blood samples were collected at 24 h (n = 9) or 4 months (n = 9) to assess toxicity, and nine organs were harvested for histology and safety studies. Genomic DNA was isolated from all tissues, and mouse GAPDH and human β2M and β-actin genes were amplified by qPCR to analyze hBM-MSCs biodistribution.


There were no deaths nor acute or chronic toxicity. Hematology, biochemistry and body weight were in the range of normal values in all groups. At 24 h hBM-MSCs were detected in 4/6 spinal cords and 1/6 hearts, and at 4 months in 3/6 hearts and 1/6 brains of transplanted mice. No tumours were found.


This study demonstrated that intrathecal injection of hBM-MSCs is safe, non toxic and do not produce tumors. These results provide further evidence that hBM-MSCs might be used in a clinical trial in patients with FRDA.


Intrathecal transplantation Bone marrow-derived mesenchymal stromal cells Friedreich’s Ataxia Neuroprotection Preclinical study 



The authors acknowledge Dra. Carmen Algueró for assistant with flow cytometry, Dr. Tornel-Osorio (Hospital Clínico Universitario Virgen de la Arrixaca) for assistant with the hematology and biochemistry analysis and Dra. Antón-García (Genomic Lab, IMIB-Arrixaca) for technical assistance. This work was supported by the Fundación Mutua Madrileña (AP162842016), Asociación Granadina de Ataxia de Friederich (ASOGAF), Instituto de Salud Carlos III (ISCIII) Spanish Net of Cell Therapy (TerCel), RETICS subprogram of the I + D + I 2013–2016 Spanish National Plan, Projects “RD12/0019/0001”, “RD12/0019/0023”, “RD16/0011/0001” and “RD16/0011/0010” funded by ISCIII and co-founded by European Regional Development Funds.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The use of human bone marrow cells was in accordance with the guidelines and regulations of the Ethics Committee of the Hospital Clínico Universitario Virgen de la Arrixaca (Murcia, Spain). All of the donors provided written informed consent prior to participation in this study. The procedures performed in this work involving animals were approved by the Ethical Committee on Animal Experimentation at University of Murcia (220/2016). All the experimental procedures involving animals were conducted in accordance with the Institutional Animal care guidelines of Murcia University.


  1. 1.
    Reyes B, Coca MI, Codinach M, López-Lucas MD, Del Mazo-Barbara A, Caminal M, et al. Assessment of biodistribution using mesenchymal stromal cells: algorithm for study design and challenges in detection methodologies. Cytotherapy. 2017;19:1060–9.CrossRefGoogle Scholar
  2. 2.
    Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–7.CrossRefGoogle Scholar
  3. 3.
    Punga T, Bühler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med. 2010;2:120–9.CrossRefGoogle Scholar
  4. 4.
    Schulz JB, Boesch S, Bürk K, Dürr A, Giunti P, Mariotti C, et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol. 2009;5:222–34.CrossRefGoogle Scholar
  5. 5.
    Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303:1–12.CrossRefGoogle Scholar
  6. 6.
    Pousset F, Legrand L, Monin ML, Ewenczyk C, Charles P, Komajda M, et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 2015;72:1334–41.CrossRefGoogle Scholar
  7. 7.
    Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012;27:1133–7.CrossRefGoogle Scholar
  8. 8.
    Marmolino D. Friedreich’s ataxia: past, present and future. Brain Res Rev. 2011;67:311–30.CrossRefGoogle Scholar
  9. 9.
    Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46.CrossRefGoogle Scholar
  10. 10.
    Long A, Napierala JS, Polak U, Hauser L, Koeppen AH, Lynch DR, et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One. 2017;12:e0189990.CrossRefGoogle Scholar
  11. 11.
    Moraleda JM, Blanquer M, Bleda P, Iniesta P, Ruiz F, Bonilla S, et al. Adult stem cell therapy: dream or reality? Transpl Immunol. 2006;17:74–7.CrossRefGoogle Scholar
  12. 12.
    Blanquer M, Moraleda JM, Iniesta F, Gómez-Espuch J, Meca-Lallana J, Villaverde R, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. 2012;30:1277–85.CrossRefGoogle Scholar
  13. 13.
    Bueno C, Ramirez C, Rodríguez-Lozano FJ, Tabarés-Seisdedos R, Rodenas M, Moraleda JM, et al. Human adult periodontal ligament-derived cells integrate and differentiate after implantation into the adult mammalian brain. Cell Transplant. 2013;22:2017–28.CrossRefGoogle Scholar
  14. 14.
    Jones J, Estirado A, Redondo C, Pacheco-Torres J, Sirerol-Piquer MS, Garcia-Verdugo JM, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther. 2015;23:130–8.CrossRefGoogle Scholar
  15. 15.
    Ruiz-López FJ, Blanquer M. Autologous bone marrow mononuclear cells as neuroprotective treatment of amyotrophic lateral sclerosis. Neural Regen Res. 2016;11:568–9.CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramírez MC, Blanquer M, et al. Mesenchymal stem cells derived from dental tissues. Int Endod J. 2011;44:800–6.CrossRefGoogle Scholar
  17. 17.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefGoogle Scholar
  18. 18.
    Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15:1009–16.CrossRefGoogle Scholar
  19. 19.
    Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:158–61.CrossRefGoogle Scholar
  20. 20.
    Pastor D, Viso-León MC, Botella-López A, Jaramillo-Merchan J, Moraleda JM, Jones J, et al. Bone marrow transplantation in hindlimb muscles of motoneuron degenerative mice reduces neuronal death and improves motor function. Stem Cells Dev. 2013;22:1633–44.CrossRefGoogle Scholar
  21. 21.
    Quesada MP, Jones J, Rodríguez-Lozano FJ, Moraleda JM, Martinez S. Novel aberrant genetic and epigenetic events in Friedreich’s ataxia. Exp Cell Res. 2015;335:51–61.CrossRefGoogle Scholar
  22. 22.
    Jones J, Estirado A, Redondo C, Bueno C, Martínez S. Human adipose stem cell-conditioned medium increases survival of Friedreich’s ataxia cells submitted to oxidative stress. Stem Cells Dev. 2012;21:2817–26.CrossRefGoogle Scholar
  23. 23.
    Kemp K, Mallam E, Hares K, Witherick J, Scolding N, Wilkins A. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts. PLoS One. 2011;6:e26098.CrossRefGoogle Scholar
  24. 24.
    Jones J, Estirado A, Redondo C, Martinez S. Stem cells from wildtype and Friedreich’s ataxia mice present similar neuroprotective properties in dorsal root ganglia cells. PLoS One. 2013;8:e62807.CrossRefGoogle Scholar
  25. 25.
    Rocca CJ, Goodman SM, Dulin JN, Haquang JH, Gertsman I, Blondelle J, et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med. 2017;9:eaaj2347CrossRefGoogle Scholar
  26. 26.
    Cabanes C, Bonilla S, Tabares L, Martínez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol Dis. 2007;26:408–18.CrossRefGoogle Scholar
  27. 27.
    Selvadurai LP, Harding IH, Corben LA, Georgiou-Karistianis N. Cerebral abnormalities in Friedreich ataxia: a review. Neurosci Biobehav Rev. 2018;84:394–406.CrossRefGoogle Scholar
  28. 28.
    Harris VK, Vyshkina T, Sadiq SA. Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy. 2016;18:1476–82.CrossRefGoogle Scholar
  29. 29.
    Choi SA, Yun JW, Joo KM, Lee JY, Kwak PA, Lee YE, et al. Preclinical biosafety evaluation of genetically modified human adipose tissue-derived mesenchymal stem cells for clinical applications to brainstem glioma. Stem Cells Dev. 2016;25:897–908.CrossRefGoogle Scholar
  30. 30.
    Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, Ferreira R, et al. Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheum. 2013;65:1786–94.CrossRefGoogle Scholar
  31. 31.
    Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7:e47559.CrossRefGoogle Scholar
  32. 32.
    Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35:e00191CrossRefGoogle Scholar
  33. 33.
    Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5:933–46.CrossRefGoogle Scholar
  34. 34.
    Creane M, Howard L, O’Brien T, Coleman CM. Biodistribution and retention of locally administered human mesenchymal stromal cells: quantitative polymerase chain reaction-based detection of human DNA in murine organs. Cytotherapy. 2017;19:384–94.CrossRefGoogle Scholar
  35. 35.
    Forostyak S, Jendelova P, Kapcalova M, Arboleda D, Sykova E. Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy. 2011;13:1036–46.CrossRefGoogle Scholar
  36. 36.
    Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells. 2014;32:3163–72.CrossRefGoogle Scholar
  37. 37.
    Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7.CrossRefGoogle Scholar
  38. 38.
    François S, Usunier B, Douay L, Benderitter M, Chapel A. Long-term quantitative biodistribution and side effects of human mesenchymal stem cells (hMSCs) engraftment in NOD/SCID mice following irradiation. Stem Cells Int. 2014;2014:939275.CrossRefGoogle Scholar
  39. 39.
    Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, et al. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30.CrossRefGoogle Scholar
  40. 40.
    Santamaría AJ, Benavides FD, DiFede DL, Khan A, Pujol MV, Dietrich WD, et al. Clinical and neurophysiological changes after targeted intrathecal injections of bone marrow stem cells in a C3 tetraplegic subject. J Neurotrauma. 2019;36:500–16.CrossRefGoogle Scholar
  41. 41.
    Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20:806–19.CrossRefGoogle Scholar
  42. 42.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.CrossRefGoogle Scholar
  43. 43.
    Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016;73:337–44.CrossRefGoogle Scholar
  44. 44.
    Oh KW, Moon C, Kim HY, Oh SI, Park J, Lee JH, et al. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med. 2015;4:590–7.CrossRefGoogle Scholar
  45. 45.
    Syková E, Rychmach P, Drahorádová I, Konrádová S, Růžičková K, Voříšek I, et al. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 2017;26:647–58.CrossRefGoogle Scholar
  46. 46.
    McBride C, Gaupp D, Phinney DG. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy. 2003;5:7–18.CrossRefGoogle Scholar
  47. 47.
    Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC, et al. Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett. 2010;468:190–4.CrossRefGoogle Scholar
  48. 48.
    García Santos JM, Inuggi A, Gómez Espuch J, Vázquez C, Iniesta F, Blanquer M, et al. Spinal cord infusion of stem cells in amyotrophic lateral sclerosis: magnetic resonance spectroscopy shows metabolite improvement in the precentral gyrus. Cytotherapy. 2016;18:785–96.CrossRefGoogle Scholar
  49. 49.
    Bonilla S, Silva A, Valdés L, Geijo E, García-Verdugo JM, Martínez S. Functional neural stem cells derived from adult bone marrow. Neuroscience. 2005;133:85–95.CrossRefGoogle Scholar
  50. 50.
    Pastor D, Viso-León MC, Jones J, Jaramillo-Merchán J, Toledo-Aral JJ, Moraleda JM, et al. Comparative effects between bone marrow and mesenchymal stem cell transplantation in GDNF expression and motor function recovery in a motorneuron degenerative mouse model. Stem Cell Rev. 2012;8:445–58.CrossRefGoogle Scholar
  51. 51.
    Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.CrossRefGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society 2019

Authors and Affiliations

  • Mari Paz Quesada
    • 1
    Email author
  • David García-Bernal
    • 1
    • 2
  • Diego Pastor
    • 3
  • Alicia Estirado
    • 4
  • Miguel Blanquer
    • 1
    • 2
  • Ana Mª García-Hernández
    • 1
  • José M. Moraleda
    • 1
    • 2
  • Salvador Martínez
    • 4
    • 5
    • 6
  1. 1.Cellular Therapy and Hematopoietic Transplant Unit, Hematology Department, Virgen de la Arrixaca Clinical University Hospital, Biomedical Research Institute of Murcia, IMIB-ArrixacaCampus of International Excellence “Campus Mare Nostrum” University of MurciaEl Palmar, MurciaSpain
  2. 2.Internal Medicine Department, Medicine SchoolUniversity of Murcia, Virgen de la Arrixaca Clinical University HospitalEl Palmar, MurciaSpain
  3. 3.Sport Research CenterUniversity Miguel Hernández of ElcheElche, AlicanteSpain
  4. 4.Neuroscience Institute UMH-CSICUniversity Miguel Hernández of ElcheSan Juan, AlicanteSpain
  5. 5.CIBERSAM-ISCIIIValenciaSpain
  6. 6.Human Anatomy Department, Medicine SchoolUniversity Miguel Hernández of ElcheSan Juan, AlicanteSpain

Personalised recommendations