Current Progress in Tendon and Ligament Tissue Engineering

  • Wei Lee Lim
  • Ling Ling Liau
  • Min Hwei Ng
  • Shiplu Roy Chowdhury
  • Jia Xian LawEmail author
Review Article



Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence.


In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament.


Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro.


Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.


Tendon Ligament Tissue engineering Stem cell Bioreactor Exosomes 



This work was supported by research grants from Universiti Kebangsaan Malaysia Medical Centre (FF-2017-368) and Universiti Kebangsaan Malaysia (GGPM-2017-050).

Authors’ contributions

All the authors participate in drafting the article and revising it critically for important intellectual content. All the authors give final approval of the version to be published.

Compliance with ethical standards

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.


  1. 1.
    Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99:203–22.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chainani A, Hippensteel KJ, Kishan A, Garrigues NW, Ruch DS, Guilak F, et al. Multilayered electrospun scaffolds for tendon tissue engineering. Tissue Eng Part A. 2013;19:2594–604.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Dhammi IK, Rehan-Ul-Haq, Kumar S. Graft choices for anterior cruciate ligament reconstruction. Indian J Orthop. 2015;49:127–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen T, Jiang J, Chen S. Status and headway of the clinical application of artificial ligaments. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2015;2:15–26.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Randelli P, Spennacchio P, Ragone V, Arrigoni P, Casella A, Cabitza P. Complications associated with arthroscopic rotator cuff repair: a literature review. Musculoskelet Surg. 2012;96:9–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Schilaty ND, Nagelli C, Bates NA, Sanders TL, Krych AJ, Stuart MJ, et al. Incidence of second anterior cruciate ligament tears and identification of associated risk factors from 2001 to 2010 using a geographic database. Orthop J Sports Med. 2017;5:2325967117724196.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hanada M, Takahashi M, Matsuyama Y. Open re-rupture of the Achilles tendon after surgical treatment. Clin Pract. 2011;1:e134.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Amin NH, Volpi A, Lynch TS, Patel RM, Cerynik DL, Schickendantz MS, et al. Complications of distal biceps tendon repair: a meta-analysis of single-incision versus double-incision surgical technique. Orthop J Sports Med. 2016;4:2325967116668137.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hinchey JW, Aronowitz JG, Sanchez-Sotelo J, Morrey BF. Re-rupture rate of primarily repaired distal biceps tendon injuries. J Shoulder Elbow Surg. 2014;23:850–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Kemler E, Thijs KM, Badenbroek I, van de Port IG, Hoes AW, Backx FJ. Long-term prognosis of acute lateral ankle ligamentous sprains: high incidence of recurrences and residual symptoms. Fam Pract. 2016;33:596–600.CrossRefPubMedGoogle Scholar
  12. 12.
    Oryan A, Moshiri A, Meimandi-Parizi A. Graft selection in ACL reconstructive surgery: past, present, and future. Curr Orthop Pract. 2013;24:321–33.CrossRefGoogle Scholar
  13. 13.
    Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm. 2017;523:441–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang G, Rothrauff BB, Lin H, Yu S, Tuan RS. Tendon-derived extracellular matrix enhances transforming growth factor-β3-induced tenogenic differentiation of human adipose-derived stem cells. Tissue Eng Part A. 2017;23:166–76.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lim J, Razi ZRM, Law JX, Nawi AM, Idrus RBH, Chin TG, et al. Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Eng Regen Med. 2018;15:75–87.CrossRefPubMedGoogle Scholar
  17. 17.
    Dai L, Hu X, Zhang X, Zhu J, Zhang J, Fu X, et al. Different tenogenic differentiation capacities of different mesenchymal stem cells in the presence of BMP-12. J Transl Med. 2015;13:200.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bhatia R, Hare JM. Mesenchymal stem cells: future source for reparative medicine. Congest Hear Fail. 2005;11:87–91.CrossRefGoogle Scholar
  19. 19.
    Yuan T, Zhang CQ, Wang JH. Augmenting tendon and ligament repair with platelet-rich plasma (PRP). Muscles Ligaments Tendons J. 2013;3:139–49.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sevivas N, Teixeira FG, Portugal R, Direito-Santos B, Espregueira-Mendes J, Oliveira FJ, et al. Mesenchymal stem cell secretome improves tendon cell viability in vitro and tendon-bone healing in vivo when a tissue engineering strategy is used in a rat model of chronic massive rotator cuff tear. Am J Sports Med. 2018;46:449–59.CrossRefPubMedGoogle Scholar
  21. 21.
    Tetta C, Consiglio AL, Bruno S, Tetta E, Gatti E, Dobreva M, et al. The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair? Muscles Ligaments Tendons J. 2012;2:212–21.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kirkendall DT, Garrett WE. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7:62–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Norris CM. Sports and soft tissue injuries: A guide for students and therapists. 5th ed. London: Taylor & Francis; 2018.CrossRefGoogle Scholar
  24. 24.
    O’Brien M. Anatomy of tendons. In: Maffulli N, Renstrom P, Leadbetter WB, editors. Tendon injuries. London: Springer; 2005. p. 3–13.CrossRefGoogle Scholar
  25. 25.
    Frank CB. Ligament structure, physiology and function. J Musculoskelet Neuronal Interact. 2004;4:199–201.PubMedGoogle Scholar
  26. 26.
    Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function. ScientificWorldJournal. 2007;7:404–20.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10:312–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Józsa L, Lehto M, Kvist M, Bálint JB, Reffy A. Alterations in dry mass content of collagen fibers in degenerative tendinopathy and tendon-rupture. Matrix. 1989;9:140–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Józsa L, Kannus P. Human tendons: anatomy, physiology and pathology. 1st ed. Champaign: Human Kinetics Publisher; 1997.Google Scholar
  30. 30.
    Robi K, Jakob N, Matevz K, Matjaz V. The physiology of sports injuries and repair processes. In: Hamlin M, Draper N, Kathiravel Y, editors. Current issues in sports and exercise medicine. London: InTech; 2013. Scholar
  31. 31.
    Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6:181–90.PubMedGoogle Scholar
  32. 32.
    Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. 2015;52:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sasaki N, Shukunami N, Matsushima N, Izumi Y. Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J Biomech. 1999;32:285–92.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu B, Chow MJ, Zhang Y. Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment. Int J Biomater. 2011;2011:172389.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Louis-Ugbo J, Leeson B, Hutton WC. Tensile properties of fresh human calcaneal (Achilles) tendons. Clin Anat. 2004;17:30–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Freedman BR, Gordon JA, Soslowsky LJ. The Achilles tendon: fundamental properties and mechanisms governing healing. Muscles Ligaments Tendons J. 2014;4:245–55.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports. 1997;7:107–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Vilarta R, Vidal Bde C. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: aggregation and macromolecular order in collagen bundles. Matrix. 1989;9:55–61.CrossRefPubMedGoogle Scholar
  39. 39.
    Kannus P, Józsa L, Natri A, Järvinen M. Effects of training, immobilization and remobilization on tendons. Scand J Med Sci Sports. 1997;7:67–71.CrossRefPubMedGoogle Scholar
  40. 40.
    Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9:3–19.CrossRefPubMedGoogle Scholar
  41. 41.
    Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol. 1999;521 Pt 1:307–13.CrossRefPubMedGoogle Scholar
  42. 42.
    James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33:102–12.CrossRefPubMedGoogle Scholar
  43. 43.
    Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–59.CrossRefGoogle Scholar
  44. 44.
    Briggs AM, Woolf AD, Dreinhöfer K, Homb N, Hoy DG, Kopansky-Giles D, et al. Reducing the global burden of musculoskeletal conditions. Bull World Health Organ. 2018;96:366–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wu F, Nerlich M, Docheva D. Tendon injuries: basic science and new repair proposals. EFORT Open Rev. 2017;2:332–42.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nigg BM. The role of impact forces and foot pronation: a new paradigm. Clin J Sport Med. 2001;11:2–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Selvanetti A, Cipolla M, Puddu G. Overuse tendon injuries: basic science and classification. Oper Tech Sports Med. 1997;5:110–7.CrossRefGoogle Scholar
  48. 48.
    Pedowitz D, Kirwan G. Achilles tendon ruptures. Curr Rev Musculoskelet Med. 2013;6:285–93.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42:311–9.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Bruns J, Kampen J, Kahrs J, Plitz W. Achilles tendon rupture: experimental results on spontaneous repair in a sheep-model. Knee Surg Sports Traumatol Arthrosc. 2000;8:364–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Geremia JM, Bobbert MF, Casa Nova M, Ott RD, Lemos Fde A, Lupion Rde O, et al. The structural and mechanical properties of the Achilles tendon 2 years after surgical repair. Clin Biomech (Bristol, Avon). 2015;30:485–92.CrossRefGoogle Scholar
  52. 52.
    Sen S, Badge R, Murali R. Ligament injuries of the hand. Orthop Trauma. 2019;33:38–44.CrossRefGoogle Scholar
  53. 53.
    Ackermann PW. Tendinopathy I: understanding epidemiology, pathology, healing, and treatment. In: Gomes ME, Reis RL, Rodrigues MT, editors. Tendon regeneration. London: Elsevier; 2015. p. 113–47.CrossRefGoogle Scholar
  54. 54.
    Rodrigues MT, Reis RL, Gomes ME. Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med. 2013;7:673–86.CrossRefPubMedGoogle Scholar
  55. 55.
    Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. Clin J Sport Med. 2012;22:349–55.CrossRefPubMedGoogle Scholar
  56. 56.
    Chan KM, Fu SC. Anti-inflammatory management for tendon injuries—friends or foes? Sports Med Arthrosc Rehabil Ther Technol. 2009;1:23.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Ziltener JL, Leal S, Fournier PE. Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Phys Rehabil Med. 2010;53:278–88.CrossRefPubMedGoogle Scholar
  58. 58.
    Connizzo BK, Yannascoli SM, Tucker JJ, Caro AC, Riggin CN, Mauck RL, et al. The detrimental effects of systemic Ibuprofen delivery on tendon healing are time-dependent. Clin Orthop Relat Res. 2014;472:2433–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Monk AP, Davies LJ, Hopewell S, Harris K, Beard DJ, Price AJ. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database Syst Rev. 2016;4:CD011166.PubMedGoogle Scholar
  60. 60.
    Al-Mohrej OA, Al-Kenani NS. Acute ankle sprain: conservative or surgical approach? EFORT Open Rev. 2016;1:34–44.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    van Dijk PAD, Kerkhoffs GMMJ, van Dijk CN. Peroneal tendon injuries. In: Canata GL, D’Hooghe P, Hunt KJ, Kerkhoffs GMMJ, Longo UG, editors. Sports injuries of the foot and ankle: a focus on advanced surgical techniques. Berlin: Springer; 2019. p. 317–26.CrossRefGoogle Scholar
  62. 62.
    LaBella CR, Hennrikus W, Hewett TE, Brenner JS, Brookes MA, Demorest RA, et al.. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics. 2014;133:e1437–50.CrossRefPubMedGoogle Scholar
  63. 63.
    Sakabe T, Sakai T. Musculoskeletal diseases—tendon. Br Med Bull. 2011;99:211–25.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD. Bone-patellar tendon-bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2–10 year follow-up. Knee Surgery Sport Traumatol Arthrosc. 2012;20:1520–7.CrossRefGoogle Scholar
  65. 65.
    Batty LM, Norsworthy CJ, Lash NJ, Wasiak J, Richmond AK, Feller JA. Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy. 2015;31:957–68.CrossRefPubMedGoogle Scholar
  66. 66.
    Parchi PD, Ciapini G, Paglialunga C, Giuntoli M, Picece C, Chiellini F, et al. Anterior cruciate ligament reconstruction with LARS artificial ligament-clinical results after a long-term follow-up. Joints. 2018;6:75–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mascarenhas R, MacDonald PB. Anterior cruciate ligament reconstruction: a look at prosthetics–past, present and possible future. Mcgill J Med. 2008;11:29–37.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices. 2009;6:61–73.CrossRefPubMedGoogle Scholar
  69. 69.
    Meyer U. The history of tissue engineering and regenerative medicine in perspective. In: Meyer U, Handschel J, Wiesmann HP, Meyer T, editors. Fundamentals of tissue engineering and regenerative medicine. Berlin: Springer; 2009. p. 5–12.CrossRefGoogle Scholar
  70. 70.
    Law JX, Liau LL, Aminuddin BS, Ruszymah BH. Tissue-engineered trachea: A review. Int J Pediatr Otorhinolaryngol. 2016;91:55–63.CrossRefPubMedGoogle Scholar
  71. 71.
    Law JX, Liau LL, Saim A, Yang Y, Idrus R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med. 2017;14:699–718.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7:229–58.CrossRefPubMedGoogle Scholar
  73. 73.
    Santos ML, Rodrigues MT, Domingues RMA, Reis RL, Gomes ME. Biomaterials as tendon and ligament substitutes: current developments. In: Oliveira JM, Reis RL, editors. Regenerative strategies for the treatment of knee joint disabilities. Cham: Springer; 2016. p. 349–71.Google Scholar
  74. 74.
    Fan H, Liu H, Wong EJ, Toh SL, Goh JC. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29:3324–37.CrossRefPubMedGoogle Scholar
  75. 75.
    Fan H, Liu H, Toh SL, Goh JC. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30:4967–77.CrossRefPubMedGoogle Scholar
  76. 76.
    Petrigliano FA, Arom GA, Nazemi AN, Yeranosian MG, Wu BM, McAllister DR. In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering. Tissue Eng Part A. 2015;21:1228–36.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Leong NL, Kabir N, Arshi A, Nazemi A, Wu B, Petrigliano FA, et al. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. Tissue Eng Part A. 2015;21:1859–68.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lee KI, Lee JS, Kang KT, Shim YB, Kim YS, Jang JW, et al. In vitro and in vivo performance of tissue-engineered tendons for anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46:1641–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Deng D, Wang W, Wang B, Zhang P, Zhou G, Zhang WJ, et al. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials. 2014;35:8801–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Chen E, Yang L, Ye C, Zhang W, Ran J, Xue D, et al. An asymmetric chitosan scaffold for tendon tissue engineering: in vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomater. 2018;73:377–87.CrossRefPubMedGoogle Scholar
  81. 81.
    Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108:243–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, et al. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J. 2013;10:493–500.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.CrossRefPubMedGoogle Scholar
  84. 84.
    Francisco JC, Cunha RC, Simeoni RB, Guarita-Souza LC, Ferreira RJ, Irioda AC, et al. Amniotic membrane as a potent source of stem cells and a matrix for engineering heart tissue. J Biomed Sci Eng. 2013;6:1178–85.CrossRefGoogle Scholar
  85. 85.
    Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, et al. Decellularization and genipin crosslinking of amniotic membrane suitable for tissue engineering applications. J Biomater Sci Polym Ed. 2018;29:2051–67.CrossRefPubMedGoogle Scholar
  86. 86.
    Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Tseng SC, Espana EM, Kawakita T, Di Pascuale MA, Li W, He H, et al. How does amniotic membrane work? Ocul Surf. 2004;2:177–87.CrossRefPubMedGoogle Scholar
  88. 88.
    Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C. Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res. 2002;63:591–600.CrossRefPubMedGoogle Scholar
  89. 89.
    Boo L, Sofiah S, Selvaratnam L, Tai CC, Pingguan-Murphy B, Kamarul T. A preliminary study of human amniotic membrane as a potential chondrocyte carrier. Malays Orthop J. 2009;3:16–23.CrossRefGoogle Scholar
  90. 90.
    Benson-Martin J, Zammaretti P, Bilic G, Schweizer T, Portmann-Lanz B, Burkhardt T, et al. The Young’s modulus of fetal preterm and term amniotic membranes. Eur J Obstet Gynecol Reprod Biol. 2006;128:103–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Yang JJ, Jang EC, Song KS, Lee JS, Kim MK, Chang SH. The effect of amniotic membrane transplantation on tendon-healing in a rabbit achilles tendon model. Tissue Eng Regen Med. 2010;7:323–9.Google Scholar
  92. 92.
    Nicodemo MC, Neves LR, Aguiar JC, Brito FS, Ferreira I, Sant’Anna LB, et al. Amniotic membrane as an option for treatment of acute Achilles tendon injury in rats. Acta Cir Bras. 2017;32:125–39.CrossRefPubMedGoogle Scholar
  93. 93.
    Ozgenel GY. The effects of a combination of hyaluronic and amniotic membrane on the formation of peritendinous adhesions after flexor tendon surgery in chickens. J Bone Joint Surg Br. 2004;86:301–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Dogramaci Y, Duman IG. Reinforcement of the flexor tendon repair using human amniotic membrane: a biomechanical evaluation using the modified kessler method of tendon repair. J Am Podiatr Med Assoc. 2016;106:319–22.CrossRefPubMedGoogle Scholar
  95. 95.
    Leppänen OV, Karjalainen T, Göransson H, Hakamäki A, Havulinna J, Parkkinen J, et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft. J Hand Surg Am. 2017;42:474.e1–8.CrossRefGoogle Scholar
  96. 96.
    Seo YK, Kim JH, Eo SR. Co-effect of silk and amniotic membrane for tendon repair. J Biomater Sci Polym Ed. 2016;27:1232–47.CrossRefPubMedGoogle Scholar
  97. 97.
    Levengood GA. Arthroscopic-assisted anterior cruciate ligament reconstruction using hamstring autograft augmented with a dehydrated human amnion/chorion membrane allograft: a retrospective case report. Orthop Muscular Syst. 2016;5:213.CrossRefGoogle Scholar
  98. 98.
    Zelen CM, Poka A, Andrews J. Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis—a feasibility study. Foot Ankle Int. 2013;34:1332–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Mater Biol Appl. 2007;27:504–9.CrossRefGoogle Scholar
  100. 100.
    Ngadiman NHA, Noordin MY, Idris A, Kurniawan D. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H. 2017;231:597–616.CrossRefPubMedGoogle Scholar
  101. 101.
    Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater. 2013;2013:789289.CrossRefGoogle Scholar
  102. 102.
    Xu Y, Wu J, Wang H, Li H, Di N, Song L, et al. Fabrication of electrospun poly(L-lactide-co-ɛ-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods. 2013;19:925–36.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Barber JG, Handorf AM, Allee TJ, Li WJ. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Eng Part A. 2013;19:1265–74.CrossRefPubMedGoogle Scholar
  104. 104.
    Orr SB, Chainani A, Hippensteel KJ, Kishan A, Gilchrist C, Garrigues NW, et al. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater. 2015;24:117–26.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, et al. Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express. 2018;4:025013.CrossRefGoogle Scholar
  106. 106.
    Sensini A, Gualandi C, Cristofolini L, Tozzi G, Dicarlo M, Teti G, et al. Biofabrication of bundles of poly (lactic acid)-collagen blends mimicking the fascicles of the human Achille tendon. Biofabrication. 2017;9:015025.CrossRefPubMedGoogle Scholar
  107. 107.
    Wu S, Wang Y, Streubel PN, Duan B. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater. 2017;62:102–15.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells. 2009;27:1276–87.CrossRefPubMedGoogle Scholar
  109. 109.
    Xu W, Wang Y, Liu E, Sun Y, Luo Z, Xu Z, et al. Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A. 2013;19:2439–51.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Liau LL, Makpol S, Azurah AGN, Chua KH. Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation. Cytotechnology. 2018;70:1221–33.CrossRefPubMedGoogle Scholar
  111. 111.
    Tan Q, Lui PP, Rui YF, Wong YM. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Part A. 2012;18:840–51.CrossRefPubMedGoogle Scholar
  112. 112.
    Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Cytotherapy. 2016;18:1493–502.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Hafez P, Chowdhury SR, Jose S, Law JX, Ruszymah BHI, Mohd Ramzisham AR, et al. Development of an in vitro cardiac ischemic model using primary human cardiomyocytes. Cardiovasc Eng Technol. 2018;9:529–38.CrossRefPubMedGoogle Scholar
  114. 114.
    Kwon DR, Park GY, Lee SC. Treatment of full-thickness rotator cuff tendon tear using umbilical cord blood-derived mesenchymal stem cells and polydeoxyribonucleotides in a rabbit model. Stem Cells Int. 2018;2018:7146384.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration using a bioabsorbable material with bone marrow–derived mesenchymal stem cells in a rabbit model. Am J Sports Med. 2012;40:1259–68.CrossRefPubMedGoogle Scholar
  116. 116.
    Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, et al. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: a controlled experimental trial. Stem Cell Res Ther. 2017;8:129.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res. 2008;332:469–78.CrossRefPubMedGoogle Scholar
  118. 118.
    Park GY, Kwon DR, Lee SC. Regeneration of full-thickness rotator cuff tendon tear after ultrasound-guided injection with umbilical cord blood-derived mesenchymal stem cells in a rabbit model. Stem Cells Transl Med. 2015;4:1344–51.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Conze P, van Schie HT, van Weeren R, Staszyk C, Conrad S, Skutella T, et al. Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions. Regen Med. 2014;9:743–57.CrossRefPubMedGoogle Scholar
  120. 120.
    Lee SY, Kim W, Lim C, Chung SG. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells. 2015;33:2995–3005.CrossRefPubMedGoogle Scholar
  121. 121.
    Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014;38:1811–8.CrossRefPubMedGoogle Scholar
  122. 122.
    Kim YS, Lee HJ, Ok JH, Park JS, Kim DW. Survivorship of implanted bone marrow-derived mesenchymal stem cells in acute rotator cuff tear. J Shoulder Elbow Surg. 2013;22:1037–45.CrossRefPubMedGoogle Scholar
  123. 123.
    Geburek F, Mundle K, Conrad S, Hellige M, Walliser U, van Schie HT, et al. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions-a pilot study. Stem Cell Res Ther. 2016;7:21.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Carvalho AM, Yamada AL, Golim MA, Álvarez LE, Hussni CA, Alves AL. Evaluation of mesenchymal stem cell migration after equine tendonitis therapy. Equine Vet J. 2014;46:635–8.CrossRefPubMedGoogle Scholar
  125. 125.
    Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011;286:5855–67.CrossRefPubMedGoogle Scholar
  126. 126.
    Tao X, Liu J, Chen L, Zhou Y, Tang K. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem. 2015;35:699–709.CrossRefPubMedGoogle Scholar
  127. 127.
    Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, et al. BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One. 2011;6:e17531.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells. 2015;33:443–55.CrossRefPubMedGoogle Scholar
  129. 129.
    Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow—derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39:1282–9.CrossRefPubMedGoogle Scholar
  130. 130.
    Wang A, Breidahl W, Mackie KE, Lin Z, Qin A, Chen J, et al. Autologous tenocyte injection for the treatment of severe, chronic resistant lateral epicondylitis: a pilot study. Am J Sports Med. 2013;41:2925–32.CrossRefPubMedGoogle Scholar
  131. 131.
    Wang A, Mackie K, Breidahl W, Wang T, Zheng MH. Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-year clinical follow-up. Am J Sports Med. 2015;43:1775–83.CrossRefPubMedGoogle Scholar
  132. 132.
    Güngörmüş C, Kolankaya D, Aydin E. Histopathological and biomechanical evaluation of tenocyte seeded allografts on rat Achilles tendon regeneration. Biomaterials. 2015;51:108–18.CrossRefPubMedGoogle Scholar
  133. 133.
    Liang JI, Lin PC, Chen MY, Hsieh TH, Chen JJ, Yeh ML. The effect of tenocyte/hyaluronic acid therapy on the early recovery of healing Achilles tendon in rats. J Mater Sci Mater Med. 2014;25:217–27.CrossRefPubMedGoogle Scholar
  134. 134.
    Chen J, Yu Q, Wu B, Lin Z, Pavlos NJ, Xu J, et al. Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng Part A. 2011;17:2037–48.CrossRefPubMedGoogle Scholar
  135. 135.
    Chen JM, Willers C, Xu J, Wang A, Zheng MH. Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng. 2007;13:1479–91.CrossRefPubMedGoogle Scholar
  136. 136.
    Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.CrossRefGoogle Scholar
  137. 137.
    Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41.CrossRefPubMedGoogle Scholar
  139. 139.
    McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: mechanisms of uptake. J Circ Biomark. 2015;4:7.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Lange-Consiglio A, Perrini C, Tasquier R, Deregibus MC, Camussi G, Pascucci L, et al. Equine amniotic microvesicles and their anti-inflammatory potential in a tenocyte model in vitro. Stem Cells Dev. 2016;25:610–21.CrossRefPubMedGoogle Scholar
  141. 141.
    Uggen C, Dines J, McGarry M, Grande D, Lee T, Limpisvasti O. The effect of recombinant human platelet-derived growth factor BB–coated sutures on rotator cuff healing in a sheep model. Arthroscopy. 2010;26:1456–62.CrossRefPubMedGoogle Scholar
  142. 142.
    Hee CK, Dines JS, Dines DM, Roden CM, Wisner-Lynch LA, Turner AS, et al. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med. 2011;39:1630–9.CrossRefPubMedGoogle Scholar
  143. 143.
    Kovacevic D, Gulotta LV, Ying L, Ehteshami JR, Deng XH, Rodeo SA. rhPDGF-BB promotes early healing in a rat rotator cuff repair model. Clin Orthop Relat Res. 2015;473:1644–54.CrossRefPubMedGoogle Scholar
  144. 144.
    Tokunaga T, Ide J, Arimura H, Nakamura T, Uehara Y, Sakamoto H, et al. Local application of gelatin hydrogel sheets impregnated with platelet-derived growth factor BB promotes tendon-to-bone healing after rotator cuff repair in rats. Arthroscopy. 2015;31:1482–91.CrossRefPubMedGoogle Scholar
  145. 145.
    Ghebes CA, Groen N, Cheuk YC, Fu SC, Fernandes HM, Saris DBF. Muscle-secreted factors improve anterior cruciate ligament graft healing: an in vitro and in vivo analysis. Tissue Eng Part A. 2018;24:322–34.CrossRefPubMedGoogle Scholar
  146. 146.
    Rubio-Azpeitia E, Sánchez P, Delgado D, Andia I. Adult cells combined with platelet-rich plasma for tendon healing: cell source options. Orthop J Sports Med. 2017;5:2325967117690846.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Law JX, Chowdhury SR, Saim AB, Idrus RBH. Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds. J Tissue Viability. 2017;26:208–15.CrossRefPubMedGoogle Scholar
  148. 148.
    Xian LJ, Chowdhury SR, Bin Saim A, Idrus RB. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing. Cytotherapy. 2015;17:293–300.CrossRefPubMedGoogle Scholar
  149. 149.
    Hapa O, Cakıcı H, Kükner A, Aygün H, Sarkalan N, Baysal G. Effect of platelet-rich plasma on tendon-to-bone healing after rotator cuff repair in rats: an in vivo experimental study. Acta Orthop Traumatol Turc. 2012;46:301–7.CrossRefPubMedGoogle Scholar
  150. 150.
    Beck J, Evans D, Tonino PM, Yong S, Callaci JJ. The biomechanical and histologic effects of platelet-rich plasma on rat rotator cuff repairs. Am J Sports Med. 2012;40:2037–44.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Dolkart O, Chechik O, Zarfati Y, Brosh T, Alhajajra F, Maman E. A single dose of platelet-rich plasma improves the organization and strength of a surgically repaired rotator cuff tendon in rats. Arch Orthop Trauma Surg. 2014;134:1271–7.CrossRefPubMedGoogle Scholar
  152. 152.
    Bosch G, van Schie HT, de Groot MW, Cadby JA, van de Lest CH, Barneveld A, et al. Effects of platelet-rich plasma on the quality of repair of mechanically induced core lesions in equine superficial digital flexor tendons: a placebo-controlled experimental study. J Orthop Res. 2010;28:211–7.PubMedGoogle Scholar
  153. 153.
    Bosch G, Moleman M, Barneveld A, van Weeren PR, van Schie HT. The effect of platelet-rich plasma on the neovascularization of surgically created equine superficial digital flexor tendon lesions. Scand J Med Sci Sports. 2011;21:554–61.CrossRefPubMedGoogle Scholar
  154. 154.
    Shams A, El-Sayed M, Gamal O, Ewes W. Subacromial injection of autologous platelet-rich plasma versus corticosteroid for the treatment of symptomatic partial rotator cuff tears. Eur J Orthop Surg Traumatol. 2016;26:837–42.CrossRefPubMedGoogle Scholar
  155. 155.
    Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40:1234–41.CrossRefPubMedGoogle Scholar
  156. 156.
    Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2014;4:CD010071.Google Scholar
  157. 157.
    Sun L, Qu L, Zhu R, Li H, Xue Y, Liu X, et al. Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int. 2016;2016:9842075.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Lohberger B, Kaltenegger H, Stuendl N, Rinner B, Leithner A, Sadoghi P. Impact of cyclic mechanical stimulation on the expression of extracellular matrix proteins in human primary rotator cuff fibroblasts. Knee Surg Sports Traumatol Arthrosc. 2016;24:3884–91.CrossRefPubMedGoogle Scholar
  159. 159.
    Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell–collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007;13:1219–26.CrossRefPubMedGoogle Scholar
  160. 160.
    Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, et al. Effects of mechanical stimulation on the biomechanics and histology of stem cell–collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006;12:2291–300.CrossRefPubMedGoogle Scholar
  161. 161.
    Mace J, Wheelton A, Khan WS, Anand S. The role of bioreactors in ligament and tendon tissue engineering. Curr Stem Cell Res Ther. 2016;11:35–40.CrossRefPubMedGoogle Scholar
  162. 162.
    Hohlrieder M, Teuschl AH, Cicha K, van Griensven M, Redl H, Stampfl J. Bioreactor and scaffold design for the mechanical stimulation of anterior cruciate ligament grafts. Biomed Mater Eng. 2013;23:225–37.PubMedGoogle Scholar
  163. 163.
    Laurent CP, Vaquette C, Martin C, Guedon E, Wu X, Delconte A, et al. Towards a tissue-engineered ligament: design and preliminary evaluation of a dedicated multi-chamber tension-torsion bioreactor. Processes (Basel). 2014;2:167–79.CrossRefGoogle Scholar
  164. 164.
    Youngstrom DW, Rajpar I, Kaplan DL, Barrett JG. A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J Orthop Res. 2015;33:911–8.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Bourdón-Santoyo M, Quiñones-Uriostegui I, Martínez-López V, Sánchez-Arévalo F, Alessi-Montero A, Velasquillo C, et al. Preliminary study of an in vitro development of new tissue applying mechanical stimulation with a bioreactor as an alternative for ligament reconstruction. Rev Invest Clin. 2014;66:S100–10.PubMedGoogle Scholar
  166. 166.
    Burk J, Plenge A, Brehm W, Heller S, Pfeiffer B, Kasper C. Induction of tenogenic differentiation mediated by extracellular tendon matrix and short-term cyclic stretching. Stem Cells Int. 2016;2016:7342379.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Grier WK, Moy AS, Harley BA. Cyclic tensile strain enhances human mesenchymal stem cell Smad 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds. Eur Cell Mater. 2017;33:227–39.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Liu SH, Yang RS, al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 1995;318:265–78.Google Scholar
  169. 169.
    Zhang G, Ezura Y, Chervoneva I, Robinson PS, Beason DP, Carine ET, et al. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J Cell Biochem. 2006;98:1436–49.CrossRefPubMedGoogle Scholar
  170. 170.
    LaCroix AS, Duenwald-Kuehl SE, Lakes RS, Vanderby R Jr. Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol (1985). 2013;115:43–51.CrossRefGoogle Scholar
  171. 171.
    Barber FA, Herbert MA, Coons DA. Tendon augmentation grafts: biomechanical failure loads and failure patterns. Arthroscopy. 2006;22:534–8.CrossRefPubMedGoogle Scholar
  172. 172.
    Leduc S, Yahia L, Boudreault F, Fernandes JC, Duval N. Mechanical evaluation of a ligament fixation system for ACL reconstruction at the tibia in a canine cadaver model. Ann Chir. 1999;53:735–41.PubMedGoogle Scholar
  173. 173.
    Schindhelm K, Rogers GJ, Milthorpe BK, Hall PJ, Howlett CR, Sekel R, et al. Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament. Clin Orthop Relat Res. 1991;267:278–93.Google Scholar
  174. 174.
    Nightingale EJ, Allen CP, Sonnabend DH, Goldberg J, Walsh WR. Mechanical properties of the rotator cuff: response to cyclic loading at varying abduction angles. Knee Surg Sports Traumatol Arthrosc. 2003;11:389–92.CrossRefPubMedGoogle Scholar
  175. 175.
    Handl M, Drzík M, Cerulli G, Povýsil C, Chlpík J, Varga F, et al. Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surg Sports Traumatol Arthrosc. 2007;15:233–41.CrossRefPubMedGoogle Scholar
  176. 176.
    Wren TA, Yerby SA, Beaupré GS, Carter DR. Mechanical properties of the human achilles tendon. Clin Biomech (Bristol, Avon). 2001;16:245–51.CrossRefGoogle Scholar
  177. 177.
    Gurkan UA, Cheng X, Kishore V, Uquillas JA, Akkus O. Comparison of morphology, orientation, and migration of tendon derived fibroblasts and bone marrow stromal cells on electrochemically aligned collagen constructs. J Biomed Mater Res A. 2010;94:1070–9.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, et al. Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng Part A. 2017;23:859–72.CrossRefPubMedGoogle Scholar
  179. 179.
    Yoon JP, Lee CH, Jung JW, Lee HJ, Lee YS, Kim JY, et al. Sustained delivery of transforming growth factor β1 by use of absorbable alginate scaffold enhances rotator cuff healing in a rabbit model. Am J Sports Med. 2018;46:1441–50.CrossRefPubMedGoogle Scholar
  180. 180.
    Sahoo S, Toh SL, Goh JC. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31:2990–8.CrossRefPubMedGoogle Scholar
  181. 181.
    Rothrauff BB, Lauro BB, Yang G, Debski RE, Musahl V, Tuan RS. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng Part A. 2017;23:378–89.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Leung M, Jana S, Tsao CT, Zhang M. Tenogenic differentiation of human bone marrow stem cells via a combinatory effect of aligned chitosan–poly-caprolactone nanofibers and TGF-β3. J Mater Chem B. 2013;1:6516–24.CrossRefGoogle Scholar
  183. 183.
    Wu G, Deng X, Song J, Chen F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J Photochem Photobiol B. 2018;178:27–32.CrossRefPubMedGoogle Scholar
  184. 184.
    Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym. 2016;153:492–500.CrossRefPubMedGoogle Scholar
  185. 185.
    Araque-Monrós MC, Gamboa-Martínez TC, Santos LG, Bernabé SG, Pradas MM, Estellés JM. New concept for a regenerative and resorbable prosthesis for tendon and ligament: physicochemical and biological characterization of PLA-braided biomaterial. J Biomed Mater Res A. 2013;101:3228–37.PubMedGoogle Scholar
  186. 186.
    Leroy A, Nottelet B, Bony C, Pinese C, Charlot B, Garric X, et al. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation. Biomater Sci. 2015;3:617–26.CrossRefPubMedGoogle Scholar
  187. 187.
    Yang G, Lin H, Rothrauff BB, Yu S, Tuan RS. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater. 2016;35:68–76.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Bellini D, Cencetti C, Sacchetta AC, Battista AM, Martinelli A, Mazzucco L, et al. PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration. J Mech Behav Biomed Mater. 2016;64:151–60.CrossRefPubMedGoogle Scholar
  189. 189.
    Sharifi-Aghdam M, Faridi-Majidi R, Derakhshan MA, Chegeni A, Azami M. Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering. Proc Inst Mech Eng H. 2017;231:652–62.CrossRefPubMedGoogle Scholar
  190. 190.
    Reese SP, Ellis BJ, Weiss JA. Multiscale modeling of ligaments and tendons. In: Gefen A, editor. Multiscale computer modeling in biomechanics and biomedical engineering. Berlin: Springer; 2013. p. 103–47.CrossRefGoogle Scholar
  191. 191.
    Barfod KW. Acute Achilles tendon rupture: assessment of non-operative treatment. Dan Med J. 2014;61:B4837.PubMedGoogle Scholar
  192. 192.
    Richardson LE, Dudhia J, Clegg PD, Smith R. Stem cells in veterinary medicine—attempts at regenerating equine tendon after injury. Trends Biotechnol. 2007;25:409–16.CrossRefPubMedGoogle Scholar
  193. 193.
    Nguyen DT, Dellbrügge S, Tak PP, Woo SL, Blankevoort L, van Dijk NC. Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL. J Exp Orthop. 2015;2:4.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society 2019

Authors and Affiliations

  1. 1.Tissue Engineering Centre, Faculty of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
  2. 2.Department of Physiology, Faculty of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia

Personalised recommendations