Advertisement

Tissue Engineering and Regenerative Medicine

, Volume 15, Issue 4, pp 477–492 | Cite as

Mesenchymal Stem Cells of Different Origin-Seeded Bioceramic Construct in Regeneration of Bone Defect in Rabbit

  • Swapan Kumar Maiti
  • M. U. Shivakumar
  • Divya Mohan
  • Naveen Kumar
  • Karam Pal Singh
Original Article
  • 49 Downloads

Abstract

BACKGROUND:

Stem cell is currently playing a major role in the treatment of number of incurable diseases via transplantation therapy. The objective of this study was to determine the osteogenic potential of allogenic and xenogenic bone-derived MSC seeded on a hydroxyapatite (HA/TCP) bioceramic construct in critical size bone defect (CSD) in rabbits.

METHODS:

A 15 mm long radial osteotomy was performed unilaterally in thirty-six rabbits divided equally in six groups. Bone defects were filled with bioscaffold seeded with autologous, allogenic, ovine, canine BMSCs and cell free bioscaffold block in groups A, B, C, D and E respectively. An empty defect served as the control group.

RESULTS:

The radiological, histological and SEM observations depicted better and early signs of new bone formation and bridging bone/implant interfaces in the animals of group A followed by B. Both xenogenous MSC-HA/TCP construct also accelerated the healing of critical sized bone defect. There was no sign of any inflammatory reaction in the xenogenic composite scaffold group of animals confirmed their well acceptance by the host body.

CONCLUSION:

In vivo experiments in rabbit CSD model confirmed that autogenous, allogenous and xenogenous BMSC seeded on bioscaffold promoted faster healing of critical size defects. Hence, we may suggest that BMSCs are suitable for bone formation in fracture healing and non-union.

Keywords

Mesenchymal stem cells Hydroxyapatite bioceramic Allogenic Xenogenic Bone healing 

Notes

Acknowledgement

The authors wish to thank Prof. H. Varma, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala (India) for his technical assistance for designing and preparation of HA/TCP bioceramic.

Author contributions

SKM conceived and designed the study. SKM and SMU performed the experiments. KPS performed the histological analysis. SKM, SMU, KPS and NK analyzed and interpreted the data. SKM, SMU, and NK contributed to research infrastructure. SKM and DM wrote the paper. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study was conducted after getting approval from the ICAR-IVRI—Institute Animal Ethics Committee for Animal Care and Animal Experimentation [IAEC, No-F. 1-53/2012-13-JD (Research)].

References

  1. 1.
    Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting. Clin Orthop Relat Res. 1999;367:S107–17.CrossRefGoogle Scholar
  2. 2.
    Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Barrilleaux B, Phinney DG, Prockop DJ, O’Connor KC. Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng. 2006;12:3007–19.CrossRefPubMedGoogle Scholar
  4. 4.
    Niemeyer P, Szalay K, Luginbühl R, Südkamp NP, Kasten P. Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomater. 2010;6:900–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim HJ, Park JB, Lee JK, Park EY, Park EA, Riew KD, et al. Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. Eur Spine J. 2008;17:1515–21.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in human and dogs. Clinical and histological study. J Biomed Mater Res. 1990;24:379–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80:985–96.CrossRefPubMedGoogle Scholar
  8. 8.
    Ettinger MP. Aging bone and osteoporosis: strategies for preventing fractures in the elderly. Arch Intern Med. 2003;163:2237–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am. 2003;85A:1927–35.CrossRefGoogle Scholar
  10. 10.
    Shabbir A, Zisa D, Leiker M, Johnston C, Lin H, Lee T. Muscular dystrophy therapy by non-autologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation. 2009;87:1275–82.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Tyndall A, Walker UA, Cope A, Dazzi F, De Bari C, Fibbe W, et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, and 31 October 2005. Arthritis Res Ther. 2007;9:301.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Götherström C. Immunomodulation by multipotent mesenchymal stromal cells. Transplantation. 2007;84:S35–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Kretlow JD, Mikos AG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 2007;13:927–38.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu CZ, Han ZW, Hourd P, Czernuszka JT. On the process capability of the solid free-form fabrication: a case study of scaffold moulds for tissue engineering. Proc Inst Mech Eng H. 2008;222:377–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Maiti SK, Ninu AR, Sangeetha P, Mathew DD, Tamilmahan P, Kritaniya D, et al. Mesenchymal stem cells-seeded bioceramic construct for bone regeneration in large critical-size bone defect in rabbit. J Stem Cells Regen Med. 2016;12:87–99.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Shors EC. Coralline bone graft substitutes. Orthop Clin North Am. 1999;30:599–613.CrossRefPubMedGoogle Scholar
  18. 18.
    Maiti SK, Singh GR. Ceramic biomaterials in reconstructive surgery—a review. Indian J Vet Surg. 2003;24:1–10.Google Scholar
  19. 19.
    Ravindran NA, Maiti SK, Palakkara S, Kritaniya D, Mahan T, Kumar N. In vitro osteoinduction potential of a novel silica coated hydroxyapatite bioscaffold seeded with rabbit mesenchymal stem cell. J Stem Cell Res Ther. 2016.  https://doi.org/10.15406/jsrt.2016.02.00009.CrossRefGoogle Scholar
  20. 20.
    LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.CrossRefGoogle Scholar
  21. 21.
    Maiti SK, Kumar MU, Srivastava L, Ninu AR, Kumar N. Isolation, proliferation and morphological characteristics of bone marrow derived mesenchymal stem cells (BM-MSC) from different animal species. Trends Biomater Artif Organs. 2013;27:29–35.Google Scholar
  22. 22.
    Kaveh K, Ibrahim R, Abubakar MZ, Ibrahim TA. Repair of compact bone critical sized defect with bone tissue engineering in rabbits. J Appl Anim Res. 2011;39:108–13.CrossRefGoogle Scholar
  23. 23.
    Perumal V, Roberts CS. (ii) Factors contributing to non-union of fractures. Orthop Trauma. 2007;21:258–61.Google Scholar
  24. 24.
    Zhang X, Qi YY, Zhao TF, Li D, Dai XS, Niu L, et al. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds. Chin Med J (Engl). 2012;125:4031–6.PubMedGoogle Scholar
  25. 25.
    Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng. 2001;72:96–107.CrossRefPubMedGoogle Scholar
  26. 26.
    Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Robey PG. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation. 1997;63:1059–69.CrossRefPubMedGoogle Scholar
  27. 27.
    Kasten P, Vogel J, Luginbühl R, Niemeyer P, Tonak M, Lorenz H, et al. Ectopic bon formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials. 2005;26:5879–89.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37:2491–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997;6:125–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate–alginate–gelatin hybrid scaffolds. J Tissue Eng Regen Med. 2007;1:417–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Tanaka T, Hirose M, Kotobuki N, Tadokoro M, Ohgushi H, Fukuchi T, et al. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. J Biomed Mater Res A. 2009;91:428–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Habibovic P, Yuan H, van der Valk CM, Meijer M, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75.CrossRefPubMedGoogle Scholar
  33. 33.
    Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328–37.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang X, Cui P, Chen W, Zhao D, Luo J, Li G, et al. Study on the directed inducing process of cartilage cells differentiated from human marrow mesenchymal stem cells. Zhonghua Er Bi Yan Hou Ke Za Zhi. 2002;37:137–9.PubMedGoogle Scholar
  35. 35.
    Tu J, Wang H, Li H, Dai K, Wang J, Zhang X. The in vivo bone formation by mesenchymal stem cells in zein scaffolds. Biomaterials. 2009;30:4369–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Kaveh K, Ibrahim R, Ibrahim TA, Mohd Zuki AB. Bone marrow seeded bone graft versus bone graft; compact bone critical sized defect healing pattern in rabbit. J Anim Vet Adv. 2010;9:1588–96.CrossRefGoogle Scholar
  37. 37.
    Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Frank O, Heim M, Jakob M, Barbero A, Schäfer D, Bendik I, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem. 2002;85:737–46.CrossRefPubMedGoogle Scholar
  39. 39.
    Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007;117:1249–59.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer. 2001;91:1219–30.CrossRefPubMedGoogle Scholar
  41. 41.
    Li Y, Zhang C, Xiong F, Yu MJ, Peng FL, Shang YC, et al. Comparative study of mesenchymal stem cells from C57BL/10 and mdx mice. BMC Cell Biol. 2008;9:24.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Niemeyer P, Schönberger TS, Hahn J, Kasten P, Fellenberg J, Süedkamp N, et al. Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Eng Part A. 2010;16:33–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Jäger M, Degistirici O, Knipper A, Fischer J, Sager M, Krauspe R. Bone healing and migration of cord blood-derived stem cells into a critical size femoral defect after xenotransplantation. J Bone Miner Res. 2007;22:1224–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Henriksson HB, Svanvik T, Jonsson M, Hagman M, Horn M, Lindahl A, Brisby H. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine (Phila Pa 1976). 2009;34:141–8.CrossRefGoogle Scholar
  45. 45.
    Bartholomew A, Sturgeon C, Siatkas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang L, Lu XF, Lu YR, Liu J, Gao K, Zeng YZ, et al. Immunogenicity and immune modulation of osteogenic differentiated mesenchymal stem cells from Banna minipig inbred line. Transplant Proc. 2006;38:2267–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355:S7–21.CrossRefGoogle Scholar
  49. 49.
    Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013;5:136–48.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Qin Y, Guan J, Zhang C. Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J. 2014;90:643–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of SurgeryICAR-Indian Veterinary Research Institute (Deemed University)IzatnagarIndia
  2. 2.Centre for Animal Disease Research and DiagnosisICAR-Indian Veterinary Research Institute (Deemed University)IzatnagarIndia

Personalised recommendations