Tissue Engineering and Regenerative Medicine

, Volume 14, Issue 6, pp 653–665 | Cite as

Current Understanding of Stem Cell and Secretome Therapies in Liver Diseases

  • Dongkyu Kim
  • Gun-Sik Cho
  • Choongseong Han
  • Dong-Hyuk Park
  • Hee-Kyung Park
  • Dong-Hun Woo
  • Jong-Hoon KimEmail author
Review Article
Part of the following topical collections:
  1. Stem cell biology


Liver failure is one of the main risks of death worldwide, and it originates from repetitive injuries and inflammations of liver tissues, which finally leads to the liver cirrhosis or cancer. Currently, liver transplantation is the only effective treatment for the liver diseases although it has a limitation due to donor scarcity. Alternatively, cell therapy to regenerate and reconstruct the damaged liver has been suggested to overcome the current limitation of liver disease cures. Several transplantable cell types could be utilized for recovering liver functions in injured liver, including bone marrow cells, mesenchymal stem cells, hematopoietic stem cells, macrophages, and stem cell-derived hepatocytes. Furthermore, paracrine effects of transplanted cells have been suggested as a new paradigm for liver disease cures, and this application would be a new strategy to cure liver failures. Therefore, here we reviewed the current status and challenges of therapy using stem cells for liver disease treatments.


Liver failure Liver regeneration Stem cell transplantation Secretome 



Non-parenchymal cells


Hepatic stellate cells


Partial hepatectomy


Tumor necrosis factor-α




Hepatocyte growth factor


Epidermal growth factor


Fibroblast growth factor


Vascular endothelial growth factor


Insulin-like growth factor


Transforming growth factor-beta 1


Extra cellular matrix


Platelet-derived growth factor-B


Tissue inhibitors of metalloproteinases


Bone marrow cells


Mesenchymal stem cells


Pluripotent stem cells


Embryonic stem cells


Induced pluripotent stem cells


Conditioned medium


Milk fat globule-epidermal growth factor 8



This research was supported by the Bio and Medical Technology Development Program of the NRF funded by the Korean government, MSIP (NRF-2017M3A9B4042581) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1C1B2001891).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

Ethical statement

This review article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Corless JK, Middleton HM 3rd. Normal liver function. A basis for understanding hepatic disease. Arch Intern Med. 1983;143:2291–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver architecture, cell function, and disease. Semin Immunopathol. 2009;31:399–409.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernal W, Wendon J. Acute liver failure. N Engl J Med. 2013;369:2525–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Zamora Nava LE, Aguirre Valadez J, Chávez-Tapia NC, Torre A. Acute-on-chronic liver failure: a review. Ther Clin Risk Manag. 2014;10:295–303.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Jadlowiec CC, Taner T. Liver transplantation: current status and challenges. World J Gastroenterol. 2016;22:4438–45.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cantz T, Manns MP, Ott M. Stem cells in liver regeneration and therapy. Cell Tissue Res. 2008;331:271–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol. 2004;5:836–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeong J, Kim KN, Chung MS, Kim HJ. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng Regen Med. 2016;13:732–9.CrossRefGoogle Scholar
  9. 9.
    Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem. 2003;134:551–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kuo TK, Hung SP, Chuang CH, Chen CT, Shih YR, Fang SC et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology. 2008;134:2111–21.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. 2004;6:532–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011;53:2003–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol. 2015;62:S157–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther. 2014;39:673–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Jang YJ, An SY, Kim JH. Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis. BMB Rep. 2017;50:58–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol. 2012;42:501–48.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol. 2015;63:1023–37.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Böhm F, Köhler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med. 2010;2:294–305.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fausto N, Campbell JS, Riehle KJ. Liver regeneration. J Hepatol. 2012;57:692–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang L, Magness ST, Bataller R, Rippe RA, Brenner DA. NF-kappaB activation in Kupffer cells after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 2005;289:G530–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996;274:1379–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci U S A. 1997;94:1441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Nakamura K, Nonaka H, Saito H, Tanaka M, Miyajima A. Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice. Hepatology. 2004;39:635–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Ren X, Hogaboam C, Carpenter A, Colletti L. Stem cell factor restores hepatocyte proliferation in IL-6 knockout mice following 70% hepatectomy. J Clin Invest. 2003;112:1407–18.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pediaditakis P, Lopez-Talavera JC, Petersen B, Monga SP, Michalopoulos GK. The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat. Hepatology. 2001;34:688–93.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sakata H, Takayama H, Sharp R, Rubin JS, Merlino G, LaRochelle WJ. Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ. 1996;7:1513–23.PubMedGoogle Scholar
  27. 27.
    Desbois-Mouthon C, Wendum D, Cadoret A, Rey C, Leneuve P, Blaise A, et al. Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J. 2006;20:773–5.PubMedGoogle Scholar
  28. 28.
    Steiling H, Wüstefeld T, Bugnon P, Brauchle M, Fässler R, Teupser D, et al. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration. Oncogene. 2003;22:4380–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Stolz DB, Mars WM, Petersen BE, Kim TH, Michalopoulos GK. Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Can Res. 1999;59:3954–60.Google Scholar
  30. 30.
    Taniguchi E, Sakisaka S, Matsuo K, Tanikawa K, Sata M. Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. J Histochem Cytochem. 2001;49:121–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cells. 2012;1:1261–92.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 2013;123:1902–10.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Pennisi PA, Kopchick JJ, Thorgeirsson S, LeRoith D, Yakar S. Role of growth hormone (GH) in liver regeneration. Endocrinology. 2004;145:4748–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology. 2001;33:1098–109.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sodhi D, Micsenyi A, Bowen WC, Monga DK, Talavera JC, Monga SP. Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration. J Hepatol. 2005;43:132–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Croquelois A, Blindenbacher A, Terracciano L, Wang X, Langer I, Radtke F, et al. Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology. 2005;41:487–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang L, Wang CM, Hou LH, Dou GR, Wang YC, Hu XB, et al. Disruption of the transcription factor recombination signal-binding protein-Jkappa (RBP-J) leads to veno-occlusive disease and interfered liver regeneration in mice. Hepatology. 2009;49:268–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Houck KA, Michalopoulos GK. Altered responses of regenerating hepatocytes to norepinephrine and transforming growth factor type beta. J Cell Physiol. 1989;141:503–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Oe S, Lemmer ER, Conner EA, Factor VM, Levéen P, Larsson J, et al. Intact signaling by transforming growth factor beta is not required for termination of liver regeneration in mice. Hepatology. 2004;40:1098–105.PubMedCrossRefGoogle Scholar
  40. 40.
    Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001;34:89–100.PubMedCrossRefGoogle Scholar
  42. 42.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer. 2015;15:653–67.PubMedCrossRefGoogle Scholar
  44. 44.
    Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;7:d793–807.PubMedCrossRefGoogle Scholar
  45. 45.
    Ueberham E, Löw R, Ueberham U, Schönig K, Bujard H, Gebhardt R. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology. 2003;37:1067–78.PubMedCrossRefGoogle Scholar
  46. 46.
    Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun. 2004;321:413–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Bataller R, Ginès P, Nicolás JM, Görbig MN, Garcia-Ramallo E, Gasull X, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Bataller R, Sancho-Bru P, Ginès P, Lora JM, Al-Garawi A, Solé M, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang YJ, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002;122:1399–410.PubMedCrossRefGoogle Scholar
  50. 50.
    Mohammed FF, Smookler DS, Taylor SE, Fingleton B, Kassiri Z, Sanchez OH, et al. Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet. 2004;36:969–77.PubMedCrossRefGoogle Scholar
  51. 51.
    Rudolph KL, Trautwein C, Kubicka S, Rakemann T, Bahr MJ, Sedlaczek N, et al. Differential regulation of extracellular matrix synthesis during liver regeneration after partial hepatectomy in rats. Hepatology. 1999;30:1159–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Fox IJ, Roy-Chowdhury J. Hepatocyte transplantation. J Hepatol. 2004;40:878–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochem Biophys Acta. 2008;1782:61–74.PubMedGoogle Scholar
  54. 54.
    Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev. 2003;120:117–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Hayner NT, Braun L, Yaswen P, Brooks M, Fausto N. Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers. Can Res. 1984;44:332–8.Google Scholar
  56. 56.
    Saito T, Tomita K, Haga H, Okumoto K, Ueno Y. Bone marrow cell-based regenerative therapy for liver cirrhosis. World J Methodol. 2013;3:65–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Terai S, Takami T, Yamamoto N, Fujisawa K, Ishikawa T, Urata Y, et al. Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. Tissue Eng Part B Rev. 2014;20:206–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Lyra AC, Soares MB, da Silva LF, Braga EL, Oliveira SA, Fortes MF, et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur J Gastroenterol Hepatol. 2010;22:33–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Amer ME, El-Sayed SZ, El-Kheir WA, Gabr H, Gomaa AA, El-Noomani N, et al. Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. Eur J Gastroenterol Hepatol. 2011;23:936–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Sakaida I, Terai S, Nishina H, Okita K. Development of cell therapy using autologous bone marrow cells for liver cirrhosis. Med Mol Morphol. 2005;38:197–202.PubMedCrossRefGoogle Scholar
  61. 61.
    Eom YW, Kim G, Baik SK. Mesenchymal stem cell therapy for cirrhosis: present and future perspectives. World J Gastroenterol. 2015;21:10253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Berardis S, Dwisthi Sattwika P, Najimi M, Sokal EM. Use of mesenchymal stem cells to treat liver fibrosis: current situation and future prospects. World J Gastroenterol. 2015;21:742–58.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Suk KT, Yoon JH, Kim MY, Kim CW, Kim JK, Park H, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: phase 2 trial. Hepatology. 2016;64:2185–97.PubMedCrossRefGoogle Scholar
  64. 64.
    Jang YO, Jun BG, Baik SK, Kim MY, Kwon SO. Inhibition of hepatic stellate cells by bone marrow-derived mesenchymal stem cells in hepatic fibrosis. Clin Mol Hepatol. 2015;21:141–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kantarcıoğlu M, Demirci H, Avcu F, Karslıoğlu Y, Babayiğit MA, Karaman B, et al. Efficacy of autologous mesenchymal stem cell transplantation in patients with liver cirrhosis. Turk J Gastroenterol. 2015;26:244–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Kharaziha P, Hellström PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. Eur J Gastroenterol Hepatol. 2009;21:1199–205.PubMedCrossRefGoogle Scholar
  67. 67.
    Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW, Cho MY, et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int. 2014;34:33–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Jang YO, Kim MY, Cho MY, Baik SK, Cho YZ, Kwon SO. Effect of bone marrow-derived mesenchymal stem cells on hepatic fibrosis in a thioacetamide-induced cirrhotic rat model. BMC Gastroenterol. 2014;14:198.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pan Q, Fouraschen SM, Kaya FS, Verstegen MM, Pescatori M, Stubbs AP, et al. Mobilization of hepatic mesenchymal stem cells from human liver grafts. Liver Transpl. 2011;17:596–609.PubMedCrossRefGoogle Scholar
  70. 70.
    Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24:2840–50.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee JH, Park HJ, Kim YA, Lee DH, Noh JK, Kwon CH, et al. The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver. Transplant Proc. 2012;44:1110–2.PubMedCrossRefGoogle Scholar
  72. 72.
    Zagoura DS, Roubelakis MG, Bitsika V, Trohatou O, Pappa KI, Kapelouzou A, et al. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut. 2012;61:894–906.PubMedCrossRefGoogle Scholar
  73. 73.
    Liang J, Zhang H, Zhao C, Wang D, Ma X, Zhao S, et al. Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. Int J Rheum Dis. 2017;20:1219–26.PubMedCrossRefGoogle Scholar
  74. 74.
    Itaba N, Matsumi Y, Okinaka K, Ashla AA, Kono Y, Osaki M, et al. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice. Sci Rep. 2015;5:16169.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nagamoto Y, Takayama K, Ohashi K, Okamoto R, Sakurai F, Tachibana M, et al. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. J Hepatol. 2016;64:1068–75.PubMedCrossRefGoogle Scholar
  76. 76.
    Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35:e00191.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kwon A, Kim Y, Kim M, Kim J, Choi H, Jekarl DW, et al. Tissue-specific differentiation potency of mesenchymal stromal cells from perinatal tissues. Sci Rep. 2016;6:23544.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pai M, Zacharoulis D, Milicevic MN, Helmy S, Jiao LR, Levicar N, et al. Autologous infusion of expanded mobilized adult bone marrow-derived CD34 + cells into patients with alcoholic liver cirrhosis. Am J Gastroenterol. 2008;103:1952–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Levicar N, Pai M, Habib NA, Tait P, Jiao LR, Marley SB, et al. Long-term clinical results of autologous infusion of mobilized adult bone marrow derived CD34 + cells in patients with chronic liver disease. Cell Prolif. 2008;41:115–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Thorgeirsson SS, Grisham JW. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology. 2006;43:2–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lenoir N. Europe confronts the embryonic stem cell research challenge. Science. 2000;287:1425–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells. 2007;25:3058–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011;3:82ra39.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, et al. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142:602–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, et al. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther. 2015;6:246.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hamooda M. Hepatocyte transplantation in children with liver cell failure. Electron Physician. 2016;8:3096–101.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Szkolnicka D, Hay DC. Concise review: advances in generating hepatocytes from pluripotent stem cells for translational medicine. Stem Cells. 2016;34:1421–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    An SY, Jang YJ, Lim HJ, Han J, Lee J, Lee G, et al. Milk fat globule-EGF factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology. 2017;152:1174–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Tanimoto H, Terai S, Taro T, Murata Y, Fujisawa K, Yamamoto N, et al. Improvement of liver fibrosis by infusion of cultured cells derived from human bone marrow. Cell Tissue Res. 2013;354:717–28.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One. 2011;6:e16789.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Carvalho AB, Quintanilha LF, Dias JV, Paredes BD, Mannheimer EG, Carvalho FG, et al. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells. 2008;26:1307–14.PubMedCrossRefGoogle Scholar
  97. 97.
    di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut. 2008;57:223–31.PubMedCrossRefGoogle Scholar
  98. 98.
    Quintanilha LF, Mannheimer EG, Carvalho AB, Paredes BD, Dias JV, Almeida AS, et al. Bone marrow cell transplant does not prevent or reverse murine liver cirrhosis. Cell Transplant. 2008;17:943–53.PubMedCrossRefGoogle Scholar
  99. 99.
    Xagorari A, Siotou E, Yiangou M, Tsolaki E, Bougiouklis D, Sakkas L, et al. Protective effect of mesenchymal stem cell-conditioned medium on hepatic cell apoptosis after acute liver injury. Int J Clin Exp Pathol. 2013;6:831–40.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther. 2016;7:71.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology. 2008;47:1634–43.PubMedCrossRefGoogle Scholar
  102. 102.
    Herrera MB, Fonsato V, Bruno S, Grange C, Gilbo N, Romagnoli R, et al. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology. 2013;57:311–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Fouraschen SM, Pan Q, de Ruiter PE, Farid WR, Kazemier G, Kwekkeboom J, et al. Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells Dev. 2012;21:2410–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang S, Chen L, Liu T, Zhang B, Xiang D, Wang Z, et al. Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng Part A. 2012;18:1352–64.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22:845–54.PubMedCrossRefGoogle Scholar
  106. 106.
    Chen L, Xiang B, Wang X, Xiang C. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res Ther. 2017;8:9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology. 2014;59:1118–29.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology. 2016;64:616–31.PubMedCrossRefGoogle Scholar
  109. 109.
    Shen J, Huang CK, Yu H, Shen B, Zhang Y, Liang Y, et al. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cell Mol Med. 2017;21:986–92.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, et al. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. An Acad Bras Cienc. 2015;87:1435–49.PubMedCrossRefGoogle Scholar
  111. 111.
    Di Santo S, Widmer HR. Paracrine factors for neurodegenerative disorders: special emphasis on Parkinson’s disease. Neural Regen Res. 2016;11:570–1.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Im W, Kim M. Cell therapy strategies vs. paracrine effect in Huntington’s disease. J Mov Disord. 2014;7:1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5:933–46.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–74.PubMedCrossRefGoogle Scholar
  115. 115.
    Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012;10:244–58.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200.PubMedCrossRefGoogle Scholar
  117. 117.
    Nicolas C, Wang Y, Luebke-Wheeler J, Nyberg SL. Stem cell therapies for treatment of liver disease. Biomedicines. 2016;4:E2.PubMedCrossRefGoogle Scholar
  118. 118.
    Yu Y, Liu H, Ikeda Y, Amiot BP, Rinaldo P, Duncan SA, et al. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. Stem cell Res. 2012;9:196–207.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12:260.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lafdil F, Chobert MN, Deveaux V, Zafrani ES, Mavier P, Nakano T, et al. Growth arrest-specific protein 6 deficiency impairs liver tissue repair after acute toxic hepatitis in mice. J Hepatol. 2009;51:55–66.PubMedCrossRefGoogle Scholar
  121. 121.
    Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med. 2003;198:913–23.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sano K, Asanuma-Date K, Arisaka F, Hattori S, Ogawa H. Changes in glycosylation of vitronectin modulate multimerization and collagen binding during liver regeneration. Glycobiology. 2007;17:784–94.PubMedCrossRefGoogle Scholar
  123. 123.
    Kim TH, Mars WM, Stolz DB, Michalopoulos GK. Expression and activation of pro-MMP-2 and pro-MMP-9 during rat liver regeneration. Hepatology. 2000;31:75–82.PubMedCrossRefGoogle Scholar
  124. 124.
    Dayoub R, Wagner H, Bataille F, Stöltzing O, Spruss T, Buechler C, et al. Liver regeneration associated protein (ALR) exhibits antimetastatic potential in hepatocellular carcinoma. Mol Med. 2011;17:221–8.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Dongkyu Kim
    • 1
  • Gun-Sik Cho
    • 1
  • Choongseong Han
    • 1
    • 3
  • Dong-Hyuk Park
    • 2
  • Hee-Kyung Park
    • 3
  • Dong-Hun Woo
    • 1
  • Jong-Hoon Kim
    • 4
    Email author
  1. 1.Laboratory of Stem CellsNEXEL Co., Ltd.SeoulKorea
  2. 2.Department of Neurosurgery, Korea University Medical Center, Anam HospitalKorea University College of MedicineSeoulKorea
  3. 3.Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea
  4. 4.Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science CampusKorea UniversitySeoulKorea

Personalised recommendations