Tissue Engineering and Regenerative Medicine

, Volume 14, Issue 5, pp 495–505 | Cite as

Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective

  • Nasar Um Min Allah
  • Zurairah Berahim
  • Azlina Ahmad
  • Thirumulu Ponnuraj Kannan
Review Article
  • 100 Downloads

Abstract

Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.

Keywords

Co-culture Endothelial cells Gingival fibroblast Tissue engineering Vascularization 

Notes

Acknowledgements

This review was supported by Universiti Sains Malaysia through the Research University Grant (RU-1001/PPSG/812168).

Compliance with ethical standards

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this review article.

References

  1. 1.
    Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontology. 2000;2000:253–69.CrossRefGoogle Scholar
  2. 2.
    Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 1977;14:53–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Fan H, Zeng X, Wang X, Zhu R, Pei G. Efficacy of prevascularization for segmental bone defect repair using β-tricalcium phosphate scaffold in rhesus monkey. Biomaterials. 2014;35:7407–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Rouwkema J, Koopman B, Blitterswijk C, Dhert W, Malda J. Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev. 2010;26:163–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63:300–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Kirkpatrick CJ, Fuchs S, Unger RE. Co-culture systems for vascularization—learning from nature. Adv Drug Deliv Rev. 2011;63:291–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.PubMedGoogle Scholar
  10. 10.
    Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CCW. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell. 2011;22:3791–800.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kellouche S, Mourah S, Bonnefoy A, Schoëvaert D, Podgorniak M-P, Calvo F, et al. Platelets, thrombospondin-1 and human dermal fibroblasts cooperate for stimulation of endothelial cell tubulogenesis through vegf and pai-1 regulation. Exp Cell Res. 2007;313:486–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT, et al. Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med. 2011;15:635–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Antoniades HN, Galanopoulos T, Neville-Golden J, Kiritsy CP, Lynch SE. Injury induces in vivo expression of platelet-derived growth factor (pdgf) and pdgf receptor mrnas in skin epithelial cells and pdgf mrna in connective tissue fibroblasts. Proc Natl Acad Sci U S A. 1991;88:565–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Singer AJ, Clark RAF. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Enzerink A, Vaheri A. Fibroblast activation in vascular inflammation. J Thromb Haemost. 2011;9:619–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Hudon V, Berthod F, Black AF, Damour O, Germain L, Auger FA. A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol. 2003;148:1094–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Black AF, Hudon V, Damour O, Germain L, Auger FA. A novel approach for studying angiogenesis: a human skin equivalent with a capillary-like network. Cell Biol Toxicol. 1999;15:81–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Staton CA, Reed MWR, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 2009;90:195–221.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis. 2001;4:91–102.PubMedCrossRefGoogle Scholar
  20. 20.
    Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001;81:439–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Morin KT, Tranquillo RT. In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res. 2013;319:2409–17.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Heiss M, Hellström M, Kalén M, May T, Weber H, Hecker M, et al. Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J. 2015;29:3076–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A. 2012;109:9342–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Donovan D, Brown NJ, Bishop ET, Lewis CE. Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis. 2001;4:113–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Ribatti D, Vacca A. Models for studying angiogenesis in vivo. Int J Biol Markers. 1999;14:207–13.PubMedGoogle Scholar
  26. 26.
    Fràter-Schröder M, Risau W, Hallmann R, Gautschi P, Böhlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A. 1987;84:5277–81.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, et al. Vascular endothelial growth factor c induces angiogenesis in vivo. Proc Natl Acad Sci U S A. 1998;95:14389–94.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Bidarra SJ, Barrias CC, Barbosa MA, Soares R, Amedee J, Granja PL. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res. 2011;7:186–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 2007;39:86–93.PubMedGoogle Scholar
  32. 32.
    Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin Belg. 2006;61:213–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res. 2010;31:158.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8:464–78.PubMedCrossRefGoogle Scholar
  35. 35.
    Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Zoccali C. The endothelium as a target in renal diseases. J Nephrol. 2007;20:S39–44.PubMedGoogle Scholar
  38. 38.
    Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: vegfs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999;13:1055–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Michiels C. Endothelial cell functions. J Cell Physiol. 2003;196:430–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988;107:1589–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Grant DS, Tashiro K, Segui-Real B, Yamada Y, Martin GR, Kleinman HK. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell. 1989;58:933–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Stamati K, Priestley JV, Mudera V, Cheema U. Laminin promotes vascular network formation in 3d in vitro collagen scaffolds by regulating vegf uptake. Exp Cell Res. 2014;327:68–77.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bornstein P. Matricellular proteins: an overview. J Cell Commun Signal. 2009;3:163–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14:608–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (ctgf) and cysteine-rich 61 (cyr61). Angiogenesis. 2002;5:153–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Holbourn KP, Acharya KR, Perbal B. The ccn family of proteins: structure–function relationships. Trends Biochem Sci. 2008;33:461–73.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, et al. Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis. 2002;23:769–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Shimo T, Kubota S, Kondo S, Nakanishi T, Sasaki A, Mese H, et al. Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Lett. 2001;174:57–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen CC, Mo FE, Lau LF. The angiogenic factor cyr61 activates a genetic program for wound healing in human skin fibroblasts. J Biol Chem. 2001;276:47329–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal mirnas. Oncogene. 2013;32:2747–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Tattersall IW, Du J, Cong Z, Cho BS, Klein AM, Dieck CL, et al. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates notch signaling function in the vascular microenvironment. Angiogenesis. 2016;19:201–15.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hinz B. Formation and function of the myofibroblast during tissue repair. J Investig Dermatol. 2007;127:526–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Wipff PJ, Hinz B. Myofibroblasts work best under stress. J Bodyw Mov Ther. 2009;13:121–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Wenger A, Kowalewski N, Stahl A, Mehlhorn AT, Schmal H, Stark GB, et al. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs. 2005;181:80–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Choong CS, Hutmacher DW, Triffitt JT. Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng. 2006;12:2521–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Heller M, Frerick-Ochs EV, Bauer HK, Schiegnitz E, Flesch D, Brieger J, et al. Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts. Biomaterials. 2016;77:207–15.PubMedCrossRefGoogle Scholar
  57. 57.
    Jin C, Ren LF, Ding HZ, Shi GS, Lin HS, Zhang F. Enhanced attachment, proliferation, and differentiation of human gingival fibroblasts on titanium surface modified with biomolecules. J Biomed Mater Res B Appl Biomater. 2012;100:2167–77.PubMedCrossRefGoogle Scholar
  58. 58.
    Giannopoulou C, Cimasoni G. Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res. 1996;75:895–902.PubMedCrossRefGoogle Scholar
  59. 59.
    Buurma B, Gu K, Rutherford RB. Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds. Eur J Oral Sci. 1999;107:282–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Moharamzadeh K, Brook I, Van Noort R, Scutt A, Thornhill M. Tissue-engineered oral mucosa: a review of the scientific literature. J Dent Res. 2007;86:115–24.PubMedCrossRefGoogle Scholar
  61. 61.
    Daghigh F, Borghaei RC, Thornton RD, Bee JH. Human gingival fibroblasts produce nitric oxide in response to proinflammatory cytokines. J Periodontol. 2002;73:392–400.PubMedCrossRefGoogle Scholar
  62. 62.
    Jin G, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011;7:3113–22.PubMedCrossRefGoogle Scholar
  63. 63.
    Ma Q, Mei S, Ji K, Zhang Y, Chu PK. Immobilization of ag nanoparticles/fgf-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior. J Biomed Mater Res A. 2011;98:274–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Blackwood KA, McKean R, Canton I, Freeman CO, Franklin KL, Cole D, et al. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials. 2008;29:3091–104.PubMedCrossRefGoogle Scholar
  65. 65.
    Chung TW, Wang SS, Wang YZ, Hsieh CH, Fu E. Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly(epsilon-caprolactone) films is influenced by nano-roughness chitosan surfaces. J Mater Sci Mater Med. 2009;20:397–404.PubMedCrossRefGoogle Scholar
  66. 66.
    Buskermolen JK, Reijnders CM, Spiekstra SW, Steinberg T, Kleverlaan CJ, Feilzer AJ, et al. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts. Tissue Eng Part C Methods. 2016;22:781–91.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, et al. Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One. 2010;5:e12743.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fournier BP, Ferre FC, Couty L, Lataillade JJ, Gourven M, Naveau A, et al. Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A. 2010;16:2891–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Fournier BP, Larjava H, Häkkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev. 2013;22:3157–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang F, Yu M, Yan X, Wen Y, Zeng Q, Yue W, et al. Gingiva-derived mesenchymal stem cell-mediated therapeutic approach for bone tissue regeneration. Stem Cells Dev. 2011;20:2093–102.PubMedCrossRefGoogle Scholar
  71. 71.
    Ferré FC, Larjava H, Loison-Robert LS, Berbar T, Owen GR, Berdal A, et al. Formation of cartilage and synovial tissue by human gingival stem cells. Stem Cells Dev. 2014;23:2895–907.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Maia LP, Novaes AB Jr, Souza SL, Grisi MF, Taba M, Palioto DB. In vitro evaluation of acellular dermal matrix as a three-dimensional scaffold for gingival fibroblasts seeding. J Periodontol. 2011;82:293–301.PubMedCrossRefGoogle Scholar
  73. 73.
    Rodrigues AZ, Oliveira PT, Novaes AB Jr, Maia LP, Souza SL, Palioto DB. Evaluation of in vitro human gingival fibroblast seeding on acellular dermal matrix. Braz Dent J. 2010;21:179–89.PubMedCrossRefGoogle Scholar
  74. 74.
    Jhaveri HM, Chavan MS, Tomar GB, Deshmukh VL, Wani MR, Miller PD Jr. Acellular dermal matrix seeded with autologous gingival fibroblasts for the treatment of gingival recession: a proof-of-concept study. J Periodontol. 2010;81:616–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Pelegrini CB, Maia LP, de Souza SL, Taba M Jr, Palioto DB. Morphological, functional and biochemical characterization of canine gingival fibroblasts. Braz Dent J. 2013;24:128–35.PubMedCrossRefGoogle Scholar
  76. 76.
    Mariotti A, Cochran DL. Characterization of fibroblasts derived from human periodontal ligament and gingiva. J Periodontol. 1990;61:103–11.PubMedCrossRefGoogle Scholar
  77. 77.
    Yoshino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts. J Periodontal Res. 2003;38:405–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Wennström JL, Lindhe J. Some effects of enamel matrix proteins on wound healing in the dento-gingival region. J Clin Periodontol. 2002;29:9–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Thoma DS, Villar CC, Carnes DL, Dard M, Chun YH, Cochran DL. Angiogenic activity of an enamel matrix derivative (EMD) and EMD-derived proteins: an experimental study in mice. J Clin Periodontol. 2011;38:253–60.PubMedCrossRefGoogle Scholar
  80. 80.
    Sakoda K, Nakajima Y, Noguchi K. Enamel matrix derivative induces production of vascular endothelial cell growth factor in human gingival fibroblasts. Eur J Oral Sci. 2012;120:513–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978;272:501–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med. 2015;9:488–503.PubMedCrossRefGoogle Scholar
  83. 83.
    Hendriks J, Riesle J, van Blitterswijk CA. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2007;1:170–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kunz-Schughart LA, Schroeder JA, Wondrak M, van Rey F, Lehle K, Hofstaedter F, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol. 2006;290:C1385–98.PubMedCrossRefGoogle Scholar
  85. 85.
    Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Investig. 1992;67:519–28.PubMedGoogle Scholar
  86. 86.
    Bayless KJ, Davis GE. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun. 2003;312:903–13.PubMedCrossRefGoogle Scholar
  87. 87.
    Nakatsu MN, Hughes CC. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 2008;443:65–82.PubMedCrossRefGoogle Scholar
  88. 88.
    Nehls V, Drenckhahn D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res. 1995;50:311–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Investig. 1990;63:115–22.PubMedGoogle Scholar
  90. 90.
    Blacher S, Devy L, Burbridge MF, Roland G, Tucker G, Noël A, et al. Improved quantification of angiogenesis in the rat aortic ring assay. Angiogenesis. 2001;4:133–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhu WH, Iurlaro M, MacIntyre A, Fogel E, Nicosia RF. The mouse aorta model: influence of genetic background and aging on bfgf- and vegf-induced angiogenic sprouting. Angiogenesis. 2003;6:193–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Akhtar N, Dickerson EB, Auerbach R. The sponge/matrigel angiogenesis assay. Angiogenesis. 2002;5:75–80.PubMedCrossRefGoogle Scholar
  93. 93.
    Forough R, Wang X, Martinez-Lemus LA, Thomas D, Sun Z, Motamed K, et al. Cell-based and direct gene transfer-induced angiogenesis via a secreted chimeric fibroblast growth factor-1 (sp-FGF-1) in the chick chorioallantoic membrane (CAM). Angiogenesis. 2003;6:47–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Uemura A, Kusuhara S, Katsuta H, Nishikawa S. Angiogenesis in the mouse retina: a model system for experimental manipulation. Exp Cell Res. 2006;312:676–83.PubMedCrossRefGoogle Scholar
  95. 95.
    Nicosia RF, Villaschi S. Autoregulation of angiogenesis by cells of the vessel wall. Int Rev Cytol. 1999;185:1–43.PubMedGoogle Scholar
  96. 96.
    Janvier R, Sourla A, Koutsilieris M, Doillon CJ. Stromal fibroblasts are required for pc-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res. 1997;17:1551–7.PubMedGoogle Scholar
  97. 97.
    Walter-Yohrling J, Pratt BM, Ledbetter S, Teicher BA. Myofibroblasts enable invasion of endothelial cells into three-dimensional tumor cell clusters: a novel in vitro tumor model. Cancer Chemother Pharmacol. 2003;52:263–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Senger DR, Davis GE. Angiogenesis. Cold Spring Harb Perspect Biol. 2011;3:a005090.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Edgar LT, Hoying JB, Utzinger U, Underwood CJ, Krishnan L, Baggett BK, et al. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J Biomech Eng. 2014;136:021001.PubMedCrossRefGoogle Scholar
  100. 100.
    Ucuzian AA, Bufalino DV, Pang Y, Greisler HP. Angiogenic endothelial cell invasion into fibrin is stimulated by proliferating smooth muscle cells. Microvasc Res. 2013;90:40–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Vascularization—the conduit to viable engineered tissues. Tissue Eng Part B Rev. 2009;15:159–69.PubMedCrossRefGoogle Scholar
  102. 102.
    Li H, Chang J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 2013;9:6981–91.PubMedCrossRefGoogle Scholar
  103. 103.
    Duttenhoefer F, Lara de Freitas R, Meury T, Loibl M, Benneker LM, Richards RG, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cell Mater. 2013;26:49–65.PubMedGoogle Scholar
  104. 104.
    Battiston KG, Cheung JW, Jain D, Santerre JP. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials. 2014;35:4465–76.PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao D, Xue C, Lin S, Shi S, Li Q, Liu M, et al. Notch signaling pathway regulates angiogenesis via endothelial cell in 3d co-culture model. J Cell Physiol. 2017;232:1548–58.PubMedCrossRefGoogle Scholar
  106. 106.
    Guerreiro SG, Brochhausen C, Negrão R, Barbosa MA, Unger RE, Kirkpatrick CJ, et al. Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice. Biomatter. 2012;2:43–52.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Freiman A, Shandalov Y, Rozenfeld D, Shor E, Segal S, Ben-David D, et al. Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Res Ther. 2016;7:5.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ribatti D, Crivellato E. Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta. 2012;1822:2–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of mirna-31. Stem Cells Transl Med. 2016;5:440–50.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kumar R, Harris-Hooker S, Kumar R, Sanford G. Co-culture of retinal and endothelial cells results in the modulation of genes critical to retinal neovascularization. Vasc Cell. 2011;3:27.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    McDonald SM, Matheson LA, McBane JE, Kuraitis D, Suuronen E, Santerre JP, et al. Use of monocyte/endothelial cell co-cultures (in vitro) and a subcutaneous implant mouse model (in vivo) to evaluate a degradable polar hydrophobic ionic polyurethane. J Cell Biochem. 2011;112:3762–72.PubMedCrossRefGoogle Scholar
  112. 112.
    Li Q, Wang Z. Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study. Arch Med Res. 2013;44:504–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Shah AR, Shah SR, Oh S, Ong JL, Wenke JC, Agrawal CM. Migration of co-cultured endothelial cells and osteoblasts in composite hydroxyapatite/polylactic acid scaffolds. Ann Biomed Eng. 2011;39:2501–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis. 2013;16:1–14.PubMedCrossRefGoogle Scholar
  115. 115.
    Tarallo S, Beltramo E, Berrone E, Porta M. Human pericyte–endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol. 2012;49:S141–51.PubMedCrossRefGoogle Scholar
  116. 116.
    Hashimoto A, Kuroyanagi Y. Standardization for mass production of allogeneic cultured dermal substitute by measuring the amount of VEGF, bFGF, HGF, TGF-beta, and il-8. J Artif Organs. 2008;11:225–31.PubMedCrossRefGoogle Scholar
  117. 117.
    Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, et al. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials. 2008;29:4217–26.PubMedCrossRefGoogle Scholar
  118. 118.
    Montesano R, Pepper MS, Orci L. Paracrine induction of angiogenesis in vitro by swiss 3t3 fibroblasts. J Cell Sci. 1993;105:1013–24.PubMedGoogle Scholar
  119. 119.
    Martin TA, Harding KG, Jiang WG. Regulation of angiogenesis and endothelial cell motility by matrix-bound fibroblasts. Angiogenesis. 1999;3:69–76.PubMedCrossRefGoogle Scholar
  120. 120.
    Martin TA, Harding K, Jiang WG. Matrix-bound fibroblasts regulate angiogenesis by modulation of ve-cadherin. Eur J Clin Investig. 2001;31:931–8.CrossRefGoogle Scholar
  121. 121.
    Velazquez OC, Snyder R, Liu ZJ, Fairman RM, Herlyn M. Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like, three-dimensional networks. FASEB J. 2002;16:1316–8.PubMedGoogle Scholar
  122. 122.
    Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF, Wheatley DN. An in vitro model of angiogenesis: basic features. Angiogenesis. 1999;3:335–44.PubMedCrossRefGoogle Scholar
  123. 123.
    Cheung JW, Jain D, McCulloch CA, Santerre JP. Pro-angiogenic character of endothelial cells and gingival fibroblasts cocultures in perfused degradable polyurethane scaffolds. Tissue Eng Part A. 2015;21:1587–99.PubMedCrossRefGoogle Scholar
  124. 124.
    Davis GE, Bayless KJ, Mavila A. Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec. 2002;268:252–75.PubMedCrossRefGoogle Scholar
  125. 125.
    Blumbach K, Zweers MC, Brunner G, Peters AS, Schmitz M, Schulz JN, et al. Defective granulation tissue formation in mice with specific ablation of integrin-linked kinase in fibroblasts–role of TGFβ1 levels and RhoA activity. J Cell Sci. 2010;123:3872–83.PubMedCrossRefGoogle Scholar
  126. 126.
    Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim Biophys Acta. 2004;1654:13–22.PubMedGoogle Scholar
  127. 127.
    Din J, Yin YZ, Huang JN, Hu CJ. The effect of vascular endothelial cells on the migration of periodontal ligament cells and gingival fibroblasts. Shanghai Kou Qiang Yi Xue. 2014;23:172–8.PubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Nasar Um Min Allah
    • 1
  • Zurairah Berahim
    • 1
  • Azlina Ahmad
    • 1
  • Thirumulu Ponnuraj Kannan
    • 1
    • 2
  1. 1.School of Dental SciencesUniversiti Sains MalaysiaKubang KerianMalaysia
  2. 2.Human Genome Centre, School of Medical SciencesUniversiti Sains MalaysiaKubang KerianMalaysia

Personalised recommendations