Tissue Engineering and Regenerative Medicine

, Volume 12, Issue 6, pp 398–409 | Cite as

Cardiomyocyte stretching for regenerative medicine and hypertrophy study

  • Akankshya Shradhanjali
  • Brandon D. Riehl
  • Il Keun Kwon
  • Jung Yul Lim
Review Article


Mechanical stretching has great utility in the control of cardiomyocyte (CM) development for cardiac tissue engineering and in the study of molecular mechanisms of CM function and pathology. The cardiac environment is highly ordered and mechanically active with spontaneous contraction beginning even before convective transport is required in the tissue. Stretching can be used to physiologically mimic these developmental conditions to guide stem cell differentiation to CM lineage with subsequent maturation of the cell-cell junctions and cytoskeletal organization. For regenerative medicine, mechanical stretch may thus be used to improve the contraction capability of the engineered tissues. Additionally, stretch conditioning of cells and tissues may increase their robustness by decreasing the effect of the damaged myocardium on the implanted tissue. Stretch is also a useful tool in the study of heart disease. Much insight into disease progression and etiology may be gained by investigating the mechanotransduction mechanisms involved in the heart disease. Specifically, data gained from stretch-based hypertrophy studies may better define pathological hypertrophy at the molecular level and thus provide treatment targets to improve patient outcomes.


Mechanical stretch Cardiomyocyte Stem cells Cardiac tissue engineering Pathological hypertrophy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Riehl BD, Park JH, Kwon IK, Lim JY. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng Part B Rev 2012;18:288–300.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 2008;103:167–176.CrossRefPubMedGoogle Scholar
  3. 3.
    Wendel JS, Ye L, Zhang P, Tranquillo RT, Zhang JJ. Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model. Tissue Eng Part A 2014;20:1325–1335.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Matsuda T, Takahashi K, Nariai T, Ito T, Takatani T, Fujio Y, et al. N-cadherin-mediated cell adhesion determines the plasticity for cell alignment in response to mechanical stretch in cultured cardiomyocytes. Biochem Biophys Res Commun 2005;326:228–232.CrossRefPubMedGoogle Scholar
  5. 5.
    Fuchs C, Scheinast M, Pasteiner W, Lagger S, Hofner M, Hoellrigl A, et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 2012;195:377–391.CrossRefPubMedGoogle Scholar
  6. 6.
    Majkut S, Dingal PC, Discher DE. Stress sensitivity and mechanotransduction during heart development. Curr Biol 2014;24:R495–R501.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Foley A. Cardiac lineage selection: integrating biological complexity into computational models. Wiley Interdiscip Rev Syst Biol Med 2009;1:334–347.CrossRefPubMedGoogle Scholar
  8. 8.
    Granados-Riveron JT, Brook JD. The impact of mechanical forces in heart morphogenesis. Circ Cardiovasc Genet 2012;5:132–142.CrossRefPubMedGoogle Scholar
  9. 9.
    Rachev A, Greenwald S, Shazly T. Are geometrical and structural variations along the length of the aorta governed by a principle of “optimal mechanical operation”? J Biomech Eng 2013;135:81006.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang BW, Wu GJ, Cheng WP, Shyu KG. Mechanical stretch via transforming growth factor-β1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes. J Formos Med Assoc 2013;112: 635–643.CrossRefPubMedGoogle Scholar
  11. 11.
    Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003;65:45–79.CrossRefPubMedGoogle Scholar
  12. 12.
    Frank D, Kuhn C, Brors B, Hanselmann C, Lüdde M, Katus HA, et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 2008;51:309–318.CrossRefPubMedGoogle Scholar
  13. 13.
    Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A 2003;100:7808–7811.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241–249.CrossRefPubMedGoogle Scholar
  15. 15.
    Sullivan KE, Quinn KP, Tang KM, Georgakoudi I, Black LD. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther 2014; 5:14.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Segers VF, Van Riet I, Andries LJ, Lemmens K, Demolder MJ, De Becker AJ, et al. Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol 2006; 290:H1370–H1377.CrossRefPubMedGoogle Scholar
  17. 17.
    Wei HJ, Chen CH, Lee WY, Chiu I, Hwang SM, Lin WW, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 2008;29:3547–3556.CrossRefPubMedGoogle Scholar
  18. 18.
    Ott HC, Berjukow S, Marksteiner R, Margreiter E, Böck G, Laufer G, et al. On the fate of skeletal myoblasts in a cardiac environment: down-regulation of voltage-gated ion channels. J Physiol 2004;558(Pt 3):793–805.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Bonakdar N, Luczak J, Lautscham L, Czonstke M, Koch TM, Mainka A, et al. Biomechanical characterization of a desminopathy in primary human myoblasts. Biochem Biophys Res Commun 2012;419:703–707.CrossRefPubMedGoogle Scholar
  20. 20.
    Qi J, Xiao J, Zhang Y, Li J, Liu Y, Li P, et al. Effects of potassium channel blockers on changes in refractoriness of atrial cardiomyocytes induced by stretch. Exp Biol Med (Maywood) 2009;234:779–784.CrossRefGoogle Scholar
  21. 21.
    Sato T, Ohkusa T, Suzuki S, Nao T, Yano M, Matsuzaki M. High ambient pressure produces hypertrophy and up-regulates cardiac sarcoplasmic reticulum Ca2+ regulatory proteins in cultured rat cardiomyocytes. Hypertens Res 2006;29:1013–1020.CrossRefPubMedGoogle Scholar
  22. 22.
    Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 2007;100:263–272.CrossRefPubMedGoogle Scholar
  23. 23.
    Barad L, Schick R, Zeevi-Levin N, Itskovitz-Eldor J, Binah O. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair. Can J Cardiol 2014;30:1279–1287.CrossRefPubMedGoogle Scholar
  24. 24.
    Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 2013;14:529–541.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Paul D, Samuel SM, Maulik N. Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 2009;11:1841–1855.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 2003;107:1247–1249.CrossRefPubMedGoogle Scholar
  27. 27.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93–98.CrossRefPubMedGoogle Scholar
  28. 28.
    Iijima Y, Nagai T, Mizukami M, Matsuura K, Ogura T, Wada H, et al. Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J 2003;17:1361–1363.PubMedGoogle Scholar
  29. 29.
    Bayati V, Sadeghi Y, Shokrgozar MA, Haghighipour N, Azadmanesh K, Amanzadeh A, et al. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell 2011;43:359–366.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu T, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, et al. In vivo differentiation of induced pluripotent stem cell-derived cardiomyocytes. Circ J 2013;77:1297–1306.CrossRefPubMedGoogle Scholar
  31. 31.
    Govoni M, Muscari C, Guarnieri C, Giordano E. Mechanostimulation protocols for cardiac tissue engineering. Biomed Res Int 2013;2013: 918640.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    De Jong AM, Maass AH, Oberdorf-Maass SU, De Boer RA, Van Gilst WH, Van Gelder IC. Cyclical stretch induces structural changes in atrial myocytes. J Cell Mol Med 2013;17:743–753.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Wang J, Guo T. Metabolic remodeling in chronic heart failure. J Zhejiang Univ Sci B 2013;14:688–695.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Vandenburgh HH, Solerssi R, Shansky J, Adams JW, Henderson SA. Mechanical stimulation of organogenic cardiomyocyte growth in vitro. Am J Physiol 1996;270(5 Pt 1):C1284–C1292.PubMedGoogle Scholar
  35. 35.
    Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, et al. The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 2008;29:844–856.CrossRefPubMedGoogle Scholar
  36. 36.
    Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA, et al. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 2002;106(12 Suppl 1):I137–I142.CrossRefPubMedGoogle Scholar
  37. 37.
    Shimko VF, Claycomb WC. Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 2008;14:49–58.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Morgan KY, Black LD. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med 2014 Jun 11 [Epub ahead of print]. DOI: 10.1002/term.1915.Google Scholar
  39. 39.
    Ge D, Liu X, Li L, Wu J, Tu Q, Shi Y, et al. Chemical and physical stimuli induce cardiomyocyte differentiation from stem cells. Biochem Biophys Res Commun 2009;381:317–321.CrossRefPubMedGoogle Scholar
  40. 40.
    Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011;109:47–59.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Dhein S, Schreiber A, Steinbach S, Apel D, Salameh A, Schlegel F, et al. Mechanical control of cell biology. Effects of cyclic mechanical stretch on cardiomyocyte cellular organization. Prog Biophys Mol Biol 2014;115:93–102.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu Y, Wen H, Gorman RC, Pilla JJ, Gorman JH, Buckberg G, et al. Reconstruction of myocardial tissue motion and strain fields from displacement-encoded MR imaging. Am J Physiol Heart Circ Physiol 2009;297: H1151–H1162.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Bhang SH, Gwak SJ, Lee TJ, Kim SS, Park HH, Park MH, et al. Cyclic mechanical strain promotes transforming-growth-factor-beta1-mediated cardiomyogenic marker expression in bone-marrow-derived mesenchymal stem cells in vitro. Biotechnol Appl Biochem 2010;55:191–197.CrossRefPubMedGoogle Scholar
  44. 44.
    Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, et al. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 2012;6:e12–e23.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Kensah G, Gruh I, Viering J, Schumann H, Dahlmann J, Meyer H, et al. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng Part C Methods 2011;17:463–473.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Girão-Silva T, Bassaneze V, Campos LC, Barauna VG, Dallan LA, Krieger JE, et al. Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. Biomed Eng Online 2014;13:54.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Wan CR, Chung S, Kamm RD. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 2011;39:1840–1847.CrossRefPubMedGoogle Scholar
  48. 48.
    Matsuda T, Fujio Y, Nariai T, Ito T, Yamane M, Takatani T, et al. N-cadherin signals through Rac1 determine the localization of connexin 43 in cardiac myocytes. J Mol Cell Cardiol 2006;40:495–502.CrossRefPubMedGoogle Scholar
  49. 49.
    Black LD, Meyers JD, Weinbaum JS, Shvelidze YA, Tranquillo RT. Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng Part A 2009;15:3099–3108.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Miklas JW, Nunes SS, Sofla A, Reis LA, Pahnke A, Xiao Y, et al. Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication 2014;6:024113.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, et al. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 2014;35:2798–2808.CrossRefPubMedGoogle Scholar
  52. 52.
    Hirschy A, Schatzmann F, Ehler E, Perriard JC. Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 2006;289:430–441.CrossRefPubMedGoogle Scholar
  53. 53.
    Yamada K, Green KG, Samarel AM, Saffitz JE. Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch. Circ Res 2005;97:346–353.CrossRefPubMedGoogle Scholar
  54. 54.
    Kaushik G, Engler AJ. From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. Prog Mol Biol Transl Sci 2014;126:219–242.CrossRefPubMedGoogle Scholar
  55. 55.
    Crosara-Alberto DP, Inoue RY, Costa CR. FAK signalling mediates NFkappaB activation by mechanical stress in cardiac myocytes. Clin Chim Acta 2009;403:81–86.CrossRefPubMedGoogle Scholar
  56. 56.
    Carreño JE, Apablaza F, Ocaranza MP, Jalil JE. [Cardiac hypertrophy: molecular and cellular events]. Rev Esp Cardiol 2006;59:473–486.CrossRefPubMedGoogle Scholar
  57. 57.
    Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Eng Part A 2009;15:1373–1380.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Senel Ayaz HG, Perets A, Ayaz H, Gilroy KD, Govindaraj M, Brookstein D, et al. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials 2014;35:8540–8552.CrossRefPubMedGoogle Scholar
  59. 59.
    Fromstein JD, Zandstra PW, Alperin C, Rockwood D, Rabolt JF, Woodhouse KA. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A 2008;14:369–378.CrossRefPubMedGoogle Scholar
  60. 60.
    McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007;34:255–262.CrossRefPubMedGoogle Scholar
  61. 61.
    Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015;89:1401–1438.CrossRefPubMedGoogle Scholar
  62. 62.
    McCain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A 2013;110:9770–9775.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Wang S, Gong H, Jiang G, Ye Y, Wu J, You J, et al. Src is required for mechanical stretch-induced cardiomyocyte hypertrophy through angiotensin II type 1 receptor-dependent β-arrestin2 pathways. PLoS One 2014;9: e92926.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Umar S, van der Valk EJ, Schalij MJ, van der Wall EE, Atsma DE, van der Laarse A. Integrin stimulation-induced hypertrophy in neonatal rat cardiomyocytes is NO-dependent. Mol Cell Biochem 2009;320:75–84.CrossRefPubMedGoogle Scholar
  65. 65.
    van der Wees CG, Bax WH, van der Valk EJ, van der Laarse A. Integrin stimulation induces calcium signalling in rat cardiomyocytes by a NOdependent mechanism. Pflugers Arch 2006;451:588–595.CrossRefPubMedGoogle Scholar
  66. 66.
    Yee KL, Weaver VM, Hammer DA. Integrin-mediated signalling through the MAP-kinase pathway. IET Syst Biol 2008;2:8–15.CrossRefPubMedGoogle Scholar
  67. 67.
    Scatena M, Giachelli C. The alpha(v)beta3 integrin, NF-kappaB, osteoprotegerin endothelial cell survival pathway. Potential role in angiogenesis. Trends Cardiovasc Med 2002;12:83–88.CrossRefPubMedGoogle Scholar
  68. 68.
    Duquesnes N, Vincent F, Morel E, Lezoualc’h F, Crozatier B. The EGF receptor activates ERK but not JNK Ras-dependently in basal conditions but ERK and JNK activation pathways are predominantly Ras-independent during cardiomyocyte stretch. Int J Biochem Cell Biol 2009;41:1173–1181.CrossRefPubMedGoogle Scholar
  69. 69.
    Leychenko A, Konorev E, Jijiwa M, Matter ML. Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes. PLoS One 2011;6:e29055.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Monreal G, Nicholson LM, Han B, Joshi MS, Phillips AB, Wold LE, et al. Cytoskeletal remodeling of desmin is a more accurate measure of cardiac dysfunction than fibrosis or myocyte hypertrophy. Life Sci 2008;83:786–794.CrossRefPubMedGoogle Scholar
  71. 71.
    Nguyen MD, Tinney JP, Yuan F, Roussel TJ, El-Baz A, Giridharan G, et al. Cardiac cell culture model as a left ventricle mimic for cardiac tissue generation. Anal Chem 2013;85:8773–8779.CrossRefPubMedGoogle Scholar
  72. 72.
    Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, et al. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 2015;87: 2107–2113.CrossRefPubMedGoogle Scholar
  73. 73.
    Cui Y, Hameed FM, Yang B, Lee K, Pan CQ, Park S, et al. Cyclic stretching of soft substrates induces spreading and growth. Nat Commun 2015; 6:6333.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Morgan KY, Black LD. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 2014;20:1654–1667.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Materials Engineering, College of EngineeringUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of DentistryKyung Hee UniversitySeoulKorea
  3. 3.Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of DentistryKyung Hee UniversitySeoulKorea
  4. 4.Department of Mechanical and Materials Engineering, College of EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations