Tissue Engineering and Regenerative Medicine

, Volume 12, Issue 5, pp 371–378 | Cite as

Direct labeling of 19F-perfluorocarbon onto multilayered cell sheet for MRI-based non-invasive cell tracking

  • Joan Oliva
  • Fawzia Bardag-Gorce
  • Andrew Wood
  • Hiroyuki Sota
  • Yutaka Niihara
Original Article

Abstract

Autologous stem cell transplantation for eye diseases is immunologically preferable to avoid allograft rejection. However, the fate of the grafted cells has never been studied. Here, we propose to use 19F-perfluorocarbon magnetic resonance imaging tracer agent, to label cell sheet in vitro. This labeling enables non-invasive visualization of possible migration of grafted cells. Oral mucosal epithelial cells were isolated from rabbit oral mucosal epithelium and were cultivated in a thermo-responsive surface to engineer a multilayer cell sheet. Different concentrations of 19F-perfluorocarbon were added to the cell sheet culture media, one or two times. Cells were analyzed in a 7 T nuclear magnetic resonance to determine the labeling efficiency. We found that 10 mg/mL and two incubations with 19F-perfluorocarbon were the optimal condition for labeling. H&E and immunocytochemistry showed that labeling did not affect the expression of cell sheets specific markers (CK4, CK13, connexin43, E-cadherin). Furthermore, no significant effects were observed on the number of cells and the cell viability, making 19F-perfluorocarbon suitable for cell tracking, with no side effects.

Keywords

Oral mucosa epithelial Cell sheet Nuclear magnetic resonance 19F-perfluorocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astaldi G, Airò R, Sauli S, Costa G. Cytobiological research in a case of progressive myeloid aplasia. 3. Injection into the medullary cavities of stem cells obtained from autologous lymphocytes activated in culture with phytohemagglutinin]. Boll Soc Ital Biol Sper 1965;41:722–724.PubMedGoogle Scholar
  2. 2.
    Sorvari T, Toivanen A, Toivanen P. Transplantation of bursal stem cells into cyclophosphamide-treated chicks. Redevelopment of bursal follicles. Transplantation 1974;17:584–592.CrossRefPubMedGoogle Scholar
  3. 3.
    Tang C, Russell PJ, Martiniello-Wilks R, Rasko JE, Khatri A. Concise review: nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells 2010;28:1686–1702.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Tseng SC, Chen SY, Shen YC, Chen WL, Hu FR. Critical appraisal of ex vivo expansion of human limbal epithelial stem cells. Curr Mol Med 2010;10:841–850.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol 2000;44:415–425.CrossRefPubMedGoogle Scholar
  6. 6.
    Bakhtiari P, Djalilian A. Update on limbal stem cell transplantation. Middle East Afr J Ophthalmol 2010;17:9–14.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997;349:990–993.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakamura T, Endo K, Cooper LJ, Fullwood NJ, Tanifuji N, Tsuzuki M, et al. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci 2003;44:106–116.CrossRefPubMedGoogle Scholar
  9. 9.
    Larouche D, Paquet C, Fradette J, Carrier P, Auger FA, Germain L. Regeneration of skin and cornea by tissue engineering. Methods Mol Biol 2009; 482:233–256.CrossRefPubMedGoogle Scholar
  10. 10.
    Schwab IR. Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 1999;97:891–986.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Heskins M, Guillet JE. Solution Properties of Poly(N-isopropylacrylamide). J Macromol Sci Chem 1968;2:1441–1455.CrossRefGoogle Scholar
  12. 12.
    Kanazawa H, Kashiwase Y, Yamamoto K, Matsushima Y, Kikuchi A, Sakurai Y, et al. Temperature-responsive liquid chromatography. 2. Effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica. Anal Chem 1997;69:823–830.CrossRefPubMedGoogle Scholar
  13. 13.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004;77:379–385.CrossRefPubMedGoogle Scholar
  14. 14.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004;351:1187–1196.CrossRefPubMedGoogle Scholar
  15. 15.
    Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, et al. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 2012;53:1325–1331.CrossRefPubMedGoogle Scholar
  16. 16.
    Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, et al. Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 2010;12:238–250.CrossRefPubMedGoogle Scholar
  17. 17.
    Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther 2012;92:50–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Vassaux G, Groot-Wassink T. In Vivo Noninvasive Imaging for Gene Therapy. J Biomed Biotechnol 2003;2003:92–101.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999;286:2244–2245.CrossRefPubMedGoogle Scholar
  20. 20.
    Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148–158.CrossRefPubMedGoogle Scholar
  21. 21.
    Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132–3142.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCIDX1 patients. J Clin Invest 2008;118:3143–3150.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Hollon T. Researchers and regulators reflect on first gene therapy death. Am J Ophthalmol 2000;129:701.CrossRefPubMedGoogle Scholar
  24. 24.
    Wolters M, Mohades SG, Hackeng TM, Post MJ, Kooi ME, Backes WH. Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy. Invest Radiol 2013;48:341–350.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu W, Frank JA. Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 2009;70:258–264.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 2010;7:656–670.CrossRefPubMedGoogle Scholar
  27. 27.
    Bardag-Gorce F, Oliva J, Wood A, Niihara H, Makalinao A, Sabino S, et al. Microarray analysis of oral mucosal epithelial cell sheet. Tissue Eng Regen Med 2013;10:362–370.CrossRefGoogle Scholar
  28. 28.
    Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007;129:523–536.CrossRefPubMedGoogle Scholar
  29. 29.
    Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714–718.CrossRefPubMedGoogle Scholar
  30. 30.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.CrossRefPubMedGoogle Scholar
  31. 31.
    Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003;112:535–548.CrossRefPubMedGoogle Scholar
  32. 32.
    Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004;62:228–232.CrossRefPubMedGoogle Scholar
  33. 33.
    Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 2009;7:4.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, et al. Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer 2012;131:570–581.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang YW, Kaneda M, Morita I. The gap junction-independent tumorsuppressing effect of connexin 43. J Biol Chem 2003;278:44852–44856.CrossRefPubMedGoogle Scholar
  36. 36.
    Cavallaro U, Christofori G. Multitasking in tumor progression: signaling functions of cell adhesion molecules. Ann N YAcad Sci 2004;1014:58–66.CrossRefGoogle Scholar
  37. 37.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10:9–22.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Ness SL, Edelmann W, Jenkins TD, Liedtke W, Rustgi AK, Kucherlapati R. Mouse keratin 4 is necessary for internal epithelial integrity. J Biol Chem 1998;273:23904–23911.CrossRefPubMedGoogle Scholar
  39. 39.
    Modo M, Hoehn M, Bulte JW. Cellular MRimaging. Mol Imaging 2005; 4:143–164.PubMedGoogle Scholar
  40. 40.
    Li SC, Tachiki LM, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev 2010;6:317–333.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013;267:26–44.CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Tissue Engineering and Regenerative Medicine Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Joan Oliva
    • 1
  • Fawzia Bardag-Gorce
    • 1
  • Andrew Wood
    • 1
  • Hiroyuki Sota
    • 1
  • Yutaka Niihara
    • 1
  1. 1.Department of Medicine, Division of HematologyLA BioMed at Harbor UCLA Medical CenterTorranceUSA

Personalised recommendations