Skip to main content

CXCL5 abundant in the wound fluid at the late phase of wound healing, possibly promoting migration of mesenchymal stem cells and vascular tube formation

Abstract

We previously reported that wound fluid generated from injured cornea at 5 day after injury had ability to induce mesenchymal to epithelial transition (MET) of circulating mesenchymal stem cells (MSCs). In the present study, we further analyzed wound fluid by cytokine array. Comparing with normal cornea, increased expression of chemokines CXCL2, CXCL3, CXCL5, CCL2, anti-inflammatory cytokine IL-10, growth factors VEGF and β-NGF, protease inhibitor TIMP-1 were observed in the wound fluid of injured cornea. Interestingly, the inductions of inflammatory cytokines, IL-1α, IL-1β, IL-4, IL-6, and TNFα were not detected. It suggests wound fluid at 5 day after injury consisted of beneficial mediators for wound healing. In particular, chemokine CXCL5 increased over 6 fold. We further analyzed the roles of CXCL5 using MSCs, isolated from bone marrow and human umbilical vein endothelial cells (HUVECs). Administration of CXCL5 significantly enhanced motility of MSCs as well as showed chemotactic effects on MSCs. Moreover, CXCL5 increased the endothelial proliferation and vascular density and spouting determined by vessel formation assay. Taken together, wound fluids at day 5 after injury are the pool of beneficial mediators for wound healing process.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M Lim, MH Goldstein, S Tuli, et al., Growth factor, cytokine and protease interactions during corneal wound healing, Ocul Surf, 1, 53 (2003).

    PubMed  Article  Google Scholar 

  2. 2.

    L Lu, PS Reinach, WW Kao, Corneal epithelial wound healing, Exp Biol Med (Maywood), 226, 653 (2001).

    CAS  Google Scholar 

  3. 3.

    NJ Trengove, SR Langton, MC Stacey, Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers, Wound Repair Regen, 4, 234 (1996).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    L Staiano-Coico, PJ Higgins, SB Schwartz, et al., Wound fluids: a reflection of the state of healing, Ostomy Wound Manage, 46, 85S (2000).

    Google Scholar 

  5. 5.

    W Ahn, HS Hong, M Zhang, et al., Induction of mesenchymal to epithelial transition of circulating mesenchymal stem cells by conditioned medium of injured cornea, Tissue Eng Regen Med, 10, 86 (2013).

    Article  Google Scholar 

  6. 6.

    Y Jiang, BN Jahagirdar, RL Reinhardt, et al., Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418, 41 (2002).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    HS Hong, YH Kim, Y Son, Perspectives on mesenchymal stem cells: tissue repair, immune modulation, and tumor homing, Arch Pharm Res, 35, 201 (2012).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Y Wu, L Chen, PG Scott, et al., Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem Cells, 25, 2648 (2007).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    AM Dimarino, AI Caplan, TL Bonfield, Mesenchymal Stem Cells in Tissue Repair, Front Immunol, 4, 201 (2013).

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    S Maxson, EA Lopez, D Yoo, et al., Concise review: role of mesenchymal stem cells in wound repair, Stem Cells Transl Med, 1, 142 (2012).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    HS Hong, J Lee, E Lee, et al., A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells, Nat Med, 15, 425 (2009).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Y Ozaki, M Nishimura, K Sekiya, et al., Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells, Stem Cells Dev, 16, 119 (2007).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Y Wu, RC Zhao, The role of chemokines in mesenchymal stem cell homing to myocardium, Stem Cell Rev, 8, 243 (2012).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    H Yagi, A Soto-Gutierrez, B Parekkadan, et al., Mesenchymal stem cells: Mechanisms of immunomodulation and homing, Cell Transplant, 19, 667 (2010).

    PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    AL Ponte, E Marais, N Gallay, et al., The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities, Stem Cells, 25, 1737 (2007).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    A Sohni, CM Verfaillie, Mesenchymal Stem Cells Migration Homing and Tracking, Stem Cells Int, 2013, 130763 (2013).

    PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    J Ringe, S Strassburg, K Neumann, et al., Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2, J Cell Biochem, 101, 135 (2007).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    AE Nedeau, RJ Bauer, K Gallagher, et al., A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrowderived mesenchymal stem cells, Exp Cell Res, 314, 2176 (2008).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    H Zhang, H Ning, L Banie, et al., Adipose tissue-derived stem cells secrete CXCL5 cytokine with chemoattractant and angiogenic properties, Biochem Biophys Res Commun, 402, 560 (2010).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    DA Arenberg, MP Keane, B DiGiovine, et al., Epithelialneutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer, J Clin Invest, 102, 465 (1998).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Y Matsuo, M Raimondo, TA Woodward, et al., CXCchemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer, Int J Cancer, 125, 1027 (2009).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    MH Jiang, E Chung, GF Chi, et al., Substance P induces M2-type macrophages after spinal cord injury, Neuroreport, 23, 786 (2012).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    YL Hsu, MF Hou, PL Kuo, et al., Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway, Oncogene, 32, 4436 (2013).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Y Wu, RC Zhao, EE Tredget, Concise review: bone marrowderived stem/progenitor cells in cutaneous repair and regeneration, Stem Cells, 28, 905 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Eunkyung Chung or Youngsook Son.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, E., Ahn, W. & Son, Y. CXCL5 abundant in the wound fluid at the late phase of wound healing, possibly promoting migration of mesenchymal stem cells and vascular tube formation. Tissue Eng Regen Med 11, 317–322 (2014). https://doi.org/10.1007/s13770-014-0004-0

Download citation

Key words

  • wound fluid
  • CXCL5
  • MSCs migration
  • endothelial proliferation
  • vessel density