Applied Biological Chemistry

, Volume 61, Issue 6, pp 599–606 | Cite as

I-motif-coated exosomes as a pH-sensitive carrier for anticancer drugs

  • Jun Yeong Kim
  • Jihyeon Song
  • Heejung Jung
  • Hyejung MokEmail author


Nature-derived exosomes have been noted as emerging carriers for anticancer drugs. In this study, as a proof-of-concept, the anticancer drug doxorubicin (Dox) was loaded onto i-motif-modified exosomes (Exo-i-motif) to deliver Dox to cancer cells efficiently. The double-stranded biotin-i-motif/flare (ds-i-motif-bio)s efficiently released Dox in an acidic pH-responsive manner within 1 h. Based on gel electrophoresis, it was clearly confirmed that ds-i-motif-bio successfully interacts with biotin-conjugated exosomes and streptavidin (strep) via the biotin–streptavidin interaction. The particle sizes were below 150 nm without aggregation after strep-mediated modification of ds-i-motif-bio on the surfaces of the exosomes. In addition, released Dox had intact bioactivity for anti-proliferation after immobilization onto the exosomes. This study could serve as a new concept of pH-responsive delivery systems of anticancer drug using nature-derived exosomes with i-motifs.


Biotin Doxorubicin Exosome I-motif pH-responsive Streptavidin 



This study was supported by Konkuk University in 2018.


  1. 1.
    Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11(6):673–692CrossRefGoogle Scholar
  2. 2.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951CrossRefGoogle Scholar
  3. 3.
    Kim J, Lee YM, Kang Y, Kim WJ (2014) Tumor-homing, size-tunable clustered nanoparticles for anticancer therapeutics. ACS Nano 8(9):9358–9367CrossRefGoogle Scholar
  4. 4.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579CrossRefGoogle Scholar
  5. 5.
    Yu G, Jung H, Kang YY, Mok H (2018) Comparative evaluation of cell- and serum-derived exosomes to deliver immune stimulators to lymph nodes. Biomaterials 162:71–81CrossRefGoogle Scholar
  6. 6.
    Wan S, Zhang L, Wang S, Liu Y, Wu C, Cui C, Sun H, Shi M, Jiang Y, Li L, Qiu L, Tan W (2017) Molecular recognition-based DNA nanoassemblies on the surfaces of nanosized exosomes. J Am Chem Soc 139(15):5289–5292CrossRefGoogle Scholar
  7. 7.
    Tamura R, Uemoto S, Tabata Y (2017) Augmented liver targeting of exosomes by surface modification with cationized pullulan. Acta Biomater 57:274–284CrossRefGoogle Scholar
  8. 8.
    Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149CrossRefGoogle Scholar
  9. 9.
    Feng LZ, Dong ZL, Tao DL, Zhang YC, Liu Z (2018) The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl Sci Rev 5(2):269–286CrossRefGoogle Scholar
  10. 10.
    Yu X, Yang X, Horte S, Kizhakkedathu JN, Brooks DE (2014) A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment. Biomaterials 35(1):278–286CrossRefGoogle Scholar
  11. 11.
    Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146CrossRefGoogle Scholar
  12. 12.
    Day HA, Pavlou P, Waller ZA (2014) i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 22(16):4407–4418CrossRefGoogle Scholar
  13. 13.
    Huang J, He Y, Yang X, Wang K, Ying L, Quan K, Yang Y, Yin B (2014) I-motif-based nano-flares for sensing pH changes in live cells. Chem Commun (Camb) 50(99):15768–15771CrossRefGoogle Scholar
  14. 14.
    Mata G, Luedtke NW (2015) Fluorescent probe for proton-coupled DNA folding revealing slow exchange of i-motif and duplex structures. J Am Chem Soc 137(2):699–707CrossRefGoogle Scholar
  15. 15.
    Sharma J, Chhabra R, Yan H, Liu Y (2007) pH-driven conformational switch of “i-motif’’ DNA for the reversible assembly of gold nanoparticles. Chem Commun 5:477–479CrossRefGoogle Scholar
  16. 16.
    Ying L, Xie N, Yang Y, Yang X, Zhou Q, Yin B, Huang J, Wang K (2016) A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection. Chem Commun (Camb) 52(50):7818–7821CrossRefGoogle Scholar
  17. 17.
    Liu J, Ma XW, Lei CN, Xue XD, Wei T, Zhao J, Li SY, Liang XJ (2016) A self-assembled DNA nanostructure for targeted and pH-triggered drug delivery to combat doxorubicin resistance. J Mater Chem B 4(22):3854–3858CrossRefGoogle Scholar
  18. 18.
    Song L, Ho VH, Chen C, Yang Z, Liu D, Chen R, Zhou D (2013) Efficient, pH-triggered drug delivery using a pH-responsive DNA-conjugated gold nanoparticle. Adv Healthc Mater 2(2):275–280CrossRefGoogle Scholar
  19. 19.
    Liu M, Chen D, Wang C, Chen X, Wen Z, Cao Y, He H (2015) Intracellular target delivery of 10-hydroxycamptothecin with solid lipid nanoparticles against multidrug resistance. J Drug Target 23(9):800–805CrossRefGoogle Scholar
  20. 20.
    Kim KY, Kim SH, Yu SN, Park SK, Choi HD, Yu HS, Ji JH, Seo YK, Ahn SC (2015) Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin. Mol Med Rep 12(2):1898–1904CrossRefGoogle Scholar
  21. 21.
    Kim J, Lee E, Kang YY, Mok H (2015) Multivalent aptamer-RNA based fluorescent probes for carrier-free detection of cellular microRNA-34a in mucin1-expressing cancer cells. Chem Commun (Camb) 51(43):9038–9041CrossRefGoogle Scholar
  22. 22.
    Jung H, Mok H (2016) Mixed micelles for targeted and efficient doxorubicin delivery to multidrug-resistant breast cancer cells. Macromol Biosci 16(5):748–758CrossRefGoogle Scholar
  23. 23.
    Yao VJ, D’Angelo S, Butler KS, Theron C, Smith TL, Marchio S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R (2016) Ligand-targeted theranostic nanomedicines against cancer. J Control Release 240:267–286CrossRefGoogle Scholar
  24. 24.
    Jeong H, Lee SH, Hwang Y, Yoo H, Jung H, Kim SH, Mok H (2017) Multivalent aptamer-RNA conjugates for simple and efficient delivery of doxorubicin/siRNA into multidrug-resistant cells. Macromol Biosci 17(4):1600343CrossRefGoogle Scholar
  25. 25.
    Liu F, Zhang JZ, Mei Y (2016) The origin of the cooperativity in the streptavidin–biotin system: a computational investigation through molecular dynamics simulations. Sci Rep 6:27190CrossRefGoogle Scholar
  26. 26.
    Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170CrossRefGoogle Scholar
  27. 27.
    Shen F, Chu S, Bence AK, Bailey B, Xue X, Erickson PA, Montrose MH, Beck WT, Erickson LC (2008) Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J Pharmacol Exp Ther 324(1):95–102CrossRefGoogle Scholar
  28. 28.
    Zeng X, Morgenstern R, Nystrom AM (2014) Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-mediated drug resistance. Biomaterials 35(4):1227–1239CrossRefGoogle Scholar
  29. 29.
    Geisow MJ, Evans WH (1984) pH in the endosome measurements during pinocytosis and receptor-mediated endocytosis. Exp Cell Res 150(1):36–46CrossRefGoogle Scholar
  30. 30.
    Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73(5):1524–1535CrossRefGoogle Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2018

Authors and Affiliations

  • Jun Yeong Kim
    • 1
  • Jihyeon Song
    • 1
  • Heejung Jung
    • 1
  • Hyejung Mok
    • 1
    Email author
  1. 1.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations