Applied Biological Chemistry

, Volume 61, Issue 3, pp 313–323 | Cite as

Evaluating natural compounds as potential insecticides against three economically important pests, Bemisia tabaci (Hemiptera: Aleyrodidae), Frankliniella occidentalis (Thysanoptera: Thripidae), and Myzus persicae (Hemiptera: Aphididae), on greenhouse sweet peppers

  • Soowan Kim
  • Jun-Kyu Lee
  • Yoon-Jae Song
  • Se Chan Kang
  • Baeyoung Kim
  • I-Jin Choi
  • Doo-Hyung Lee


Sweet pepper (Capsicum annuum L.) is one of the major export crops in the Republic of Korea. Currently, synthetic insecticides are frequently used to control major greenhouse pests including Bemisia tabaci (Hemiptera: Aleyrodidae), Myzus persicae (Hemiptera: Aphididae), and Frankliniella occidentalis (Thysanoptera: Thripidae) in Korea. However, the repeated use of chemicals has caused insecticide resistance to be developed by pests. Therefore, there is a growing demand to develop biopesticides that have high insecticidal effects but little adverse impacts to crops and nontarget organisms. In this study, three natural compounds were investigated for insecticidal effects against three pests, B. tabaci, M. persicae, and F. occidentalis, and nontarget effects to a pollinator, Bombus terrestris (Hymenoptera: Apidae) in laboratory. The three natural compounds, named JP503, G.sol®, and NO40, were an extract from Perilla frutescens var. crispa with phytoncide essential oil from pine tree, a commercialized disinfectant solution, and a type of nitric oxide in aqueous solution. Among these compounds, JP503 showed high and acute insecticidal effects on all of the three pests causing 100% mortality in 3 h. In addition, this compound resulted in the same level of acute lethality to the pollinator. Moreover, JP503 caused significant leaf damage when applied to sweet pepper plants in greenhouse conditions. The results indicate that the candidate compound would have limited potential for wide application to cash crop such as sweet peppers. Therefore, it is recommended that JP503 be used only in a site-specific manner such as applications to trap crops, barrier crops, or wild hosts adjacent to cash crop fields.


Bioassay Biopesticide Bumble bee Green peach aphid Sweetpotato whitefly Western flower thrips 



This work was supported by Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Export Promotion Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (114152-3).


  1. 1.
    Kim GD, Lee S, Kang EH, Shin YG, Jeon JY, Heo NY, Lee HS (2013) The pests survey of paprika export complexes and packing house in Korea. Korean J Agric Sci 40(2):93–99CrossRefGoogle Scholar
  2. 2.
    Jeong WJ, Lee JH, Kim HC, Bae JH (2009) Dry matter production, distribution and yield of sweet pepper grown under glasshouse and plastic greenhouse in Korea. J Bio-Environ Control 18(3):258–265Google Scholar
  3. 3.
    Kim S, Jung M, Song YJ, Kang SC, Kim B, Choi IJ, Lee DH (2017) Evaluating the potential of the extract of Perilla sp. as a natural insecticide for Bemisia tabaci (Hemiptera: Aleyrodidae) on sweet peppers. Entomol Res 47(3):208–216CrossRefGoogle Scholar
  4. 4.
    Van Lenteren JC, Woets JV (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33(1):239–269CrossRefGoogle Scholar
  5. 5.
    Lenteren JCV (2000) A greenhouse without pesticides: Fact or fantasy? Crop Prot 19(6):37Google Scholar
  6. 6.
    Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc Lond B Biol Sci 366(1573):1987–1998CrossRefGoogle Scholar
  7. 7.
    Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20(9):739–765CrossRefGoogle Scholar
  8. 8.
    Dewar AM, Van Emden HF, Harrington R (2007) Chemical control. In: CABI, pp 390–420Google Scholar
  9. 9.
    Leeuwen TV, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40(8):563–572CrossRefGoogle Scholar
  10. 10.
    Feng R, Isman MB (1995) Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia 51(8):831–833CrossRefGoogle Scholar
  11. 11.
    Bielza P, Quinto V, Contreras J, Torné M, Martín A, Espinosa PJ (2007) Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain. Pest Manag Sci 63(7):682–687CrossRefGoogle Scholar
  12. 12.
    Sato ME, Silva MZD, Raga A, Souza Filho MFD (2005) Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): Selection, cross-resistance and stability of resistance. Neotrop Entomol 34(6):991–998CrossRefGoogle Scholar
  13. 13.
    Kim BY, Lee CT (2015) Production of phytoncide from Korean pine cone waste by steam distillation. Appl Chem Eng 26(6):648–658CrossRefGoogle Scholar
  14. 14.
    Kim J, Cho I, Kim I, Kim C, Heo NH, Suh S (2006) Manufacturing of anti-viral inorganic materials from colloidal silver and titanium oxide. Rev Roum Chim 51(11):1121–1129Google Scholar
  15. 15.
    Lee DH, Wright SE, Leskey TC (2013) Impact of insecticide residue exposure on the invasive pest, Halyomorpha halys (Hemiptera: Pentatomidae): analysis of adult mobility. J Econ Entomol 106(1):150–158CrossRefGoogle Scholar
  16. 16.
    Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 7(2):229–252CrossRefGoogle Scholar
  17. 17.
    Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66CrossRefGoogle Scholar
  18. 18.
    Thacker JR (2002) An introduction to arthropod pest control. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Hajek AE (2004) Natural enemies: an introduction to biological control. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Aslan I, Özbek H, Çalmaşur Ö, Şahin F (2004) Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crops Prod 19(2):167–173CrossRefGoogle Scholar
  21. 21.
    Lynn OM, Song WG, Shim JK, Kim JE, Lee KY (2010) Effects of azadirachtin and neem-based formulations for the control of sweetpotato whitefly and root-knot nematode. J Korean Soc Appl Biol Chem 53(5):598–604CrossRefGoogle Scholar
  22. 22.
    Golmohammadi G, Hosseini-Gharalari A, Fassihi M, Arbabtafti R (2014) Efficacy of one botanical and three synthetic insecticides against silverleaf whitefly, Bemisia tabaci (Hem.: Aleyrodidae) on cucumber plants in the field. J Crop Prot 3(4):435–441Google Scholar
  23. 23.
    Simmonds MSJ, Manlove JD, Blaney WM, Khambay BPS (2002) Effects of selected botanical insecticides on the behaviour and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol Exp Appl 102(1):39–47CrossRefGoogle Scholar
  24. 24.
    Choi WI, Lee EH, Choi BR, Park HM, Ahn YJ (2003) Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol 96(5):1479–1484CrossRefGoogle Scholar
  25. 25.
    Edelson JV, Duthie J, Roberts W (2002) Toxicity of biorational insecticides: activity against the green peach aphid, Myzus persicae (Sulzer). Pest Manag Sci 58(3):255–260CrossRefGoogle Scholar
  26. 26.
    Lo PL, Bradley SJ, Murrell VC (1999) Evaluation of organically-acceptable pesticides against the green peach aphid (Myzus persicae). Proc N Z Plant Prot Conf 1999:75–79Google Scholar
  27. 27.
    Park BY, Lee MJ, Lee SK, Lee SB, Jeong IH, Park SK, Jeon YJ, Lee HS (2017) Insecticidal activity of coriander and cinnamon oils prepared by various methods against three species of agricultural pests (Myzus persicae, Teyranychus urticae and Plutella xylostella). J Appl Biol Chem 60(2):137–140Google Scholar
  28. 28.
    Duso C, Malagnini V, Pozzebon A, Castagnoli M, Liguori M, Simoni S (2008) Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biol Control 47(1):16–21CrossRefGoogle Scholar
  29. 29.
    Momen FM, Amer SAA, Refaat AM (2001) Influence of mint and peppermint on Tetranychus urticae and some predacious mites of the family Phytoseiidae (Acari: Tetranychidae: Phytoseiidae). Acta Phytopathol Entomol Hung 36(1–2):143–153CrossRefGoogle Scholar
  30. 30.
    Lee SW, Park DG, Kim KY (2012) Characteristics of phytoncide production at the recreation forest in the Chungbuk area. J Environ Impact Asses 21(2):279–287Google Scholar
  31. 31.
    Oh HJ, Ahn HM, So KH, Kim SS, Yun PY, Jeon GL, Riu KZ (2007) Chemical and antimicrobial properties of essential oils from three coniferous trees Abies koreana, Cryptomeria japonica, and Torreya nucifera. J Appl Biol Chem 50(3):164–169Google Scholar
  32. 32.
    Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J (2008) Terpenoids: natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 65(19):2979–2999CrossRefGoogle Scholar
  33. 33.
    Alzogaray RA, Lucia A, Zerba EN, Masuh HM (2011) Insecticidal activity of essential oils from eleven Eucalyptus spp. and two hybrids: lethal and sublethal effects of their major components on Blattella germanica. J Econ Entomol 104(2):595–600CrossRefGoogle Scholar
  34. 34.
    Lamiri A, Lhaloui S, Benjilali B, Berrada M (2001) Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Res 71(1):9–15CrossRefGoogle Scholar
  35. 35.
    Hebeish A, Fouda MM, Hamdy IA, El-Sawy SM, Abdel-Mohdy FA (2008) Preparation of durable insect repellent cotton fabric: limonene as insecticide. Carbohydr Polym 74(2):268–273CrossRefGoogle Scholar
  36. 36.
    Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  37. 37.
    Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12(4):321–331CrossRefGoogle Scholar
  38. 38.
    Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21(7):1937–1945CrossRefGoogle Scholar
  39. 39.
    Olofinboba MO, Kozlowski TT (1982) Effects of three systemic insecticides on seed germination and growth of Pinus halepensis seedlings. Plant Soil 64(2):255–258CrossRefGoogle Scholar
  40. 40.
    Straw NA, Fielding NJ, Waters A (1996) Phytotoxicity of insecticides used to control aphids on Sitka spruce, Picea sitchensis (Bong.) Carr. Crop Prot 15(5):451–459CrossRefGoogle Scholar
  41. 41.
    Ibrahim MA, Kainulainen P, Aflatuni A, Tiilikkala K, Holopainen JK (2001) Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests. Agric Food Sci Finl 10:243–259Google Scholar
  42. 42.
    Liu CH, Mishra AK, Tan RX, Tang C, Yang H, Shen YF (2006) Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresour Technol 97(15):1969–1973CrossRefGoogle Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2018

Authors and Affiliations

  • Soowan Kim
    • 1
  • Jun-Kyu Lee
    • 1
  • Yoon-Jae Song
    • 1
  • Se Chan Kang
    • 2
  • Baeyoung Kim
    • 3
  • I-Jin Choi
    • 4
  • Doo-Hyung Lee
    • 1
  1. 1.Department of Life SciencesGachon UniversitySeongnam-siRepublic of Korea
  2. 2.Department of Oriental Medicine BiotechnologyKyung Hee UniversityYongin-siRepublic of Korea
  3. 3.Phylus Co. Ltd.Danyang-gunRepublic of Korea
  4. 4.Department of Agriculture EducationSeoul Metropolitan Agricultural Technology CenterSeoulRepublic of Korea

Personalised recommendations