Applied Biological Chemistry

, Volume 61, Issue 2, pp 197–208 | Cite as

Aqueous Eucalyptus globulus leaf extract-mediated biosynthesis of MgO nanorods

  • Jaison Jeevanandam
  • Yen San Chan
  • Yee Hung Ku


Plant-based biosynthesis is gaining attention in nanoparticle synthesis as an alternate to chemical and physical synthesis routes due to their non-toxic and environment friendly nature. Leaf extract-based biosynthesis further facilitates rapid synthesis of non-toxic biocompatible nanoparticle that possesses various applications in biomedical and pharmaceutical industry. Metal oxides, especially MgO nanoparticles, show tremendous applications in medical industry. Moreover, plant-based biosynthesized MgO nanoparticles showed improved biophysical and biochemical properties. In the current study, MgO nanorods (MgONRs) are synthesized using Eucalyptus globulus aqueous leaf extract. The results are highly significant as rod-shaped nanoparticles possess superior cellular penetration ability than other morphologies and can be valuable in medical applications. A preliminary experiment was performed to identify the required reaction time for nanorod formation using dynamic light scattering technique. Later, one-factor-at-a-time approach was followed to identify the effect of each process parameters on average particle size of MgONRs. The optimized parameters were used for the synthesis of smaller-sized MgONRs. Fourier Transform infrared spectroscopy analysis was conducted to identify and analyze the functional groups in the leaf extract and MgONRs. The functional groups from phytochemicals and their transformation from enol to keto-form were found to be responsible for nanoparticle formation. The transmission electron microscope analysis showed that the optimized parameters yield 6–8 nm width of stacked MgONRs. Thus, the present work demonstrated a simple and rapid biosynthesis route for MgO nanorod synthesis which can be beneficial in biosensing and therapeutic application.


Biosynthesis Eucalyptus globulus leaf extract MgO nanorods Phytochemicals 



The authors would like to thank Curtin University, Malaysia, for the grant and facilities provided to support this work as well as UNIMAS, Sarawak, Malaysia, for the TEM testing facility.


  1. 1.
    Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35Google Scholar
  2. 2.
    Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248CrossRefGoogle Scholar
  3. 3.
    Jeevanandam J, Chan YS, Danquah MK (2016) Biosynthesis of metal and metal oxide nanoparticles. ChemBioEng Rev 3(2):55–67CrossRefGoogle Scholar
  4. 4.
    Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  5. 5.
    Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1):1–13CrossRefGoogle Scholar
  6. 6.
    Prathna T, Mukherjee A, Raichur AM, Mathew L, Chandrasekaran N (2010) Biomimetic synthesis of nanoparticles: science, technology & applicability. INTECH Open Access Publisher, RijekaGoogle Scholar
  7. 7.
    Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus sabdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5(7):4993–5003CrossRefGoogle Scholar
  8. 8.
    Shukla S, Parashar G, Mishra A, Misra P, Yadav B, Shukla R, Bali L, Dubey G (2004) Nano-like magnesium oxide films and its significance in optical fiber humidity sensor. Sens Actuators B 98(1):5–11CrossRefGoogle Scholar
  9. 9.
    Ma L, Lin Z, Lin J, Zhang Y, Hu L, Guo T (2009) Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties. Phys E (Amst Neth) 41(8):1500–1503CrossRefGoogle Scholar
  10. 10.
    Badar N, Chayed N, Rusdi R, Kamarudin N, Kamarulzaman N (2011) Effect of annealing time on the morphology and particle size of magnesium oxide. Malays J Microsc 7(1):78–81Google Scholar
  11. 11.
    Copp A (1995) Magnesia/magnesite. Am Ceram Soc Bull 74(6):135–137Google Scholar
  12. 12.
    Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with nanosize MgO. J Phys Chem B 103(16):3225–3228CrossRefGoogle Scholar
  13. 13.
    Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem Eur J 8(11):2602–2607CrossRefGoogle Scholar
  14. 14.
    Gesser H, Goswami P (1989) Aerogels and related porous materials. Chem Rev 89(4):765–788CrossRefGoogle Scholar
  15. 15.
    Sharma G, Jasuja ND (2016) Phytoassisted synthesis of magnesium oxide nanoparticles by Swertia chirayaita. JTUSCI 11(3):471–477Google Scholar
  16. 16.
    Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M (2012) Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res 14(9):1–10CrossRefGoogle Scholar
  17. 17.
    Leung YH, Ng A, Xu X, Shen Z, Gethings LA, Wong MT, Chan C, Guo MY, Ng YH, Djurišić AB (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10(6):1171–1183CrossRefGoogle Scholar
  18. 18.
    Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J (2012) Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem 22(47):24610–24617CrossRefGoogle Scholar
  19. 19.
    Salleh SB (1996) Eucalyptus plantations: the Malaysian experience. Reports submitted to the regional expert consultation on eucalyptus, vol II. FAO Regional Office for Asia and the Pacific, Bangkok, ThailandGoogle Scholar
  20. 20.
    Boland DJ, Brophy J, House A (1991) Eucalyptus leaf oils: use, chemistry, distillation and marketing. Inkata Press, MelbourneGoogle Scholar
  21. 21.
    Santos SA, Freire CS, Domingues MRM, Silvestre AJ, Neto CP (2011) Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography–mass spectrometry. J Agric Food Chem 59(17):9386–9393CrossRefGoogle Scholar
  22. 22.
    Hou A-J, Liu Y-Z, Yang H, Lin Z-W, Sun H-D (2000) Hydrolyzable tannins and related polyphenols from Eucalyptus globulus. J Asian Nat Prod Res 2(3):205–212CrossRefGoogle Scholar
  23. 23.
    Campos MG, Webby RF, Markham KR (2002) The unique occurrence of the flavone aglycone tricetin in Myrtaceae pollen. Zeitschrift für Naturforschung C 57(9–10):944–946Google Scholar
  24. 24.
    Godghate A, Sawant R (2014) Secondary metabolites determinations qualitatively from bark of Butea monosperma and Eucalyptus globulus. IJSET 3(2):497–501Google Scholar
  25. 25.
    Jhansi K, Jayarambabu N, Reddy KP, Reddy NM, Suvarna RP, Rao KV, Kumar VR, Rajendar V (2017) Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech 7(4):263CrossRefGoogle Scholar
  26. 26.
    Umaralikhan L, Jaffar MJM (2016) Green synthesis of MgO nanoparticles and it antibacterial activity. IJST Trans A. Google Scholar
  27. 27.
    Dobrucka R (2016) Synthesis of MgO Nanoparticles using Artemisia abrotanum Herba extract and their antioxidant and photocatalytic properties. IJST Trans A. Google Scholar
  28. 28.
    Fardood ST, Ramazani A, Joo SW (2018) Eco-friendly synthesis of magnesium oxide nanoparticles using arabic Gum. J. Appl. Chem. Res. 12(1):8–15Google Scholar
  29. 29.
    Jeevanandam J, Chan YS, Danquah MK (2017) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem 41:2800–2814CrossRefGoogle Scholar
  30. 30.
    Huang X, Neretina S, El Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910CrossRefGoogle Scholar
  31. 31.
    Karthik K, Dhanuskodi S, Gobinath C, Sivaramakrishnan S (2017) Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett 206:217–220CrossRefGoogle Scholar
  32. 32.
    Santos SA, Villaverde JJ, Freire CS, Domingues MRM, Neto CP, Silvestre AJ (2012) Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Ind Crops Prod 39:120–127CrossRefGoogle Scholar
  33. 33.
    Sheny D, Mathew J, Philip D (2012) Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occidentale. Spectrochim Acta Part A 97:306–310CrossRefGoogle Scholar
  34. 34.
    Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath S, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. NanoBiotechnology 5(1–4):34–41CrossRefGoogle Scholar
  35. 35.
    Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015) Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10(7):e0131178CrossRefGoogle Scholar
  36. 36.
    Balamurugan M, Saravanan S, Soga T (2014) Synthesis of iron oxide nanoparticles by using Eucalyptus globulus plant extract. e-J Surf Sci Nanotechnol 12:363–367CrossRefGoogle Scholar
  37. 37.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  38. 38.
    Nicollian EH, Brews JR, Nicollian EH (1982) MOS (metal oxide semiconductor) physics and technology, vol 1987. Wiley, New YorkGoogle Scholar
  39. 39.
    Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS (2010) Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res 1(2):36–40Google Scholar
  40. 40.
    Bora T, Lakshman KK, Sarkar S, Makhal A, Sardar S, Pal SK, Dutta J (2013) Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin. Beilstein J Nanotechnol 4(1):714–725CrossRefGoogle Scholar
  41. 41.
    Alwan RM, Kadhim QA, Sahan KM, Ali RA, Mahdi RJ, Kassim NA, Jassim AN (2015) Synthesis of Zinc oxide nanoparticles via sol-gel route and their characterization. Nanosci Nanotechnol 5(1):1–6Google Scholar
  42. 42.
    Umar AA, Rahman MYA, Taslim R, Salleh MM, Oyama M (2011) A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process. Nanoscale Res Lett 6(1):1Google Scholar
  43. 43.
    Klaas J, Schulz-Ekloff G, Jaeger NI (1997) UV-visible diffuse reflectance spectroscopy of zeolite-hosted mononuclear titanium oxide species. J Phys Chem B 101(8):1305–1311CrossRefGoogle Scholar
  44. 44.
    Morales AE, Mora ES, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex Fis S 53(5):18Google Scholar
  45. 45.
    Dacome AS, Da Silva CC, Da Costa CE, Fontana JD, Adelmann J, Da Costa SC (2005) Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods. Process Biochem (Oxford, UK) 40(11):3587–3594CrossRefGoogle Scholar
  46. 46.
    Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28CrossRefGoogle Scholar
  47. 47.
    Sabatini DM (2007) Leading edge nanotechnology research developments. Nova Publishers, Hauppauge, New YorkGoogle Scholar
  48. 48.
    Nakaya M, Nishida R, Muramatsu A (2014) Size control of magnetite nanoparticles in excess ligands as a function of reaction temperature and time. Molecules 19:11395–11403CrossRefGoogle Scholar
  49. 49.
    Dudhe C, Nagdeote S (2014) Effect of reaction rate and calcination time on CaNb2O6 nanoparticles. J Nanosci 909267:5Google Scholar
  50. 50.
    ISO13321 I (1996) Methods for determination of particle size distribution part 8: photon correlation spectroscopy. International Organisation for Standardisation (ISO)Google Scholar
  51. 51.
    Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1):1–9CrossRefGoogle Scholar
  52. 52.
    Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41(7):1188–1191CrossRefGoogle Scholar
  53. 53.
    Ahn S, Kim K, Chun Y, Yoon K (2007) Nucleation and growth of Cu (In, Ga) Se 2 nanoparticles in low temperature colloidal process. Thin Solid Films 515(7):4036–4040CrossRefGoogle Scholar
  54. 54.
    Sibiya PN, Xaba T, Moloto MJ (2016) Green synthetic approach for starch capped silver nanoparticles and their antibacterial activity. Pure Appl Chem 88(1–2):61–69Google Scholar
  55. 55.
    Sibiya PN, Moloto MJ (2014) Effect of precursor concentration and pH on the shape and size of starch capped silver selenide nanoparticles. Chalcogenide Lett 11(11):577–588Google Scholar
  56. 56.
    Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, Willander M (2011) Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J Nanomater 2011:9CrossRefGoogle Scholar
  57. 57.
    Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8(1):474CrossRefGoogle Scholar
  58. 58.
    Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(8):7278–7308CrossRefGoogle Scholar
  59. 59.
    Ozel F, Kockar H, Karaagac O (2015) Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J Supercond Novel Magn 28(3):823–829CrossRefGoogle Scholar
  60. 60.
    Kotov NA (2005) Nanoparticle assemblies and superstructures. CRC Press, CambridgeCrossRefGoogle Scholar
  61. 61.
    Khan M, Naqvi AH, Ahmad M (2015) Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol Rep 2:765–774CrossRefGoogle Scholar
  62. 62.
    Li J, Barron AR (2010) Fourier transform infrared spectroscopy of metal ligand complexes. OpenStax-CNX module: m3 4660Google Scholar
  63. 63.
    Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18(4):356–363CrossRefGoogle Scholar
  64. 64.
    Geethalakshmi R, Sarada D (2010) Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti microbial activities. Int J Eng Sci Res Technol 2(5):970–975Google Scholar
  65. 65.
    Baskar G, Chandhuru J, Fahad KS, Praveen A (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. AJP Technol 3(4):142–146Google Scholar
  66. 66.
    Marutikesavakumar C, Yugandhar P, Savithramma N (2015) Adansonia digitata leaf extract mediated synthesis of silver nanoparticles; characterization and antimicrobial studies. J Appl Pharm Sci 5(8):082–089CrossRefGoogle Scholar
  67. 67.
    Ismail EH, Khalil MM, Al Seif FA, El-Magdoub F (2014) Biosynthesis of gold nanoparticles using extract of grape (Vitis vinifera) leaves and seeds. Prog Nanotechnol Nanomater 3:1–12Google Scholar
  68. 68.
    Kim Y-W, Boyer R (2015) Microstructure/property relationships in titanium aluminides and alloys: proceedings of the seven session symposium on” microstructure/property ralationships in titanium alloys and titanium aluminides,” Sponsored by the titanium committee of the minerals, metals and materials society held at the 1990 TMS Fall Meeting, Detroit, Michigan, 7–11 October 1990. TmsGoogle Scholar
  69. 69.
    Asgharzadehahmadi SA (2012) Synthesis and characterization of polyacrylamide based hydrogel containing magnesium oxide nanoparticles for antibacterial applications. Universiti Teknologi Malaysia, Johor BahruGoogle Scholar
  70. 70.
    Khodashenas B, Ghorbani HR (2015) Synthesis of silver nanoparticles with different shapes. Arab J Chem (In Press)Google Scholar
  71. 71.
    Almeida M, Cavalcante L, Li MS, Varela JA, Longo E (2012) Structural refinement and photoluminescence properties of MnWO4 nanorods obtained by microwave-hydrothermal synthesis. J Inorg Organomet Polym Mater 22(1):264–271CrossRefGoogle Scholar
  72. 72.
    Gopannagari M, Kumar DP, Reddy DA, Hong S, Song MI, Kim TK (2017) In situ preparation of few-layered WS 2 nanosheets and exfoliation into bilayers on CdS nanorods for ultrafast charge carrier migrations toward enhanced photocatalytic hydrogen production. J Catal 351:153–160CrossRefGoogle Scholar
  73. 73.
    Gigault J, Mignard E, El Hadri H, Grassl B (2017) Measurement bias on nanoparticle size characterization by asymmetric flow field-flow fractionation using dynamic light-scattering detection. Chromatographia 80(2):287–294CrossRefGoogle Scholar
  74. 74.
    Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2(2):123–131CrossRefGoogle Scholar
  75. 75.
    Zijlstra P, Bullen C, Chon JW, Gu M (2006) High-temperature seedless synthesis of gold nanorods. J Phys Chem B 110(39):19315–19318CrossRefGoogle Scholar
  76. 76.
    Kalpana D, Han JH, Park WS, Lee SM, Wahab R, Lee YS (2014) Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity. Arab J Chem (In Press)Google Scholar
  77. 77.
    Takahashi T, Kokubo R, Sakaino M (2004) Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett Appl Microbiol 39(1):60–64CrossRefGoogle Scholar
  78. 78.
    Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J (2017) Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog 111:375–387CrossRefGoogle Scholar
  79. 79.
    Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466:210–213CrossRefGoogle Scholar
  80. 80.
    Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419CrossRefGoogle Scholar
  81. 81.
    Ott J, Gronemann V, Pontzen F, Fiedler E, Grossmann G, Kersebohm D, Weiss G, Witte C (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  82. 82.
    Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang L-W, Alivisatos AP (2007) Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317(5836):355–358CrossRefGoogle Scholar
  83. 83.
    Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12(1):129–142CrossRefGoogle Scholar
  84. 84.
    Khan A, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 13(7):1169–1177CrossRefGoogle Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin University MalaysiaMiriMalaysia

Personalised recommendations