Applied Biological Chemistry

, Volume 61, Issue 2, pp 163–171 | Cite as

Food, cosmetic and biological applications of characterized DOPA-melanin from Vibrio alginolyticus strain BTKKS3

  • Noble K. Kurian
  • Sarita G. Bhat


Melanins are one of the most common pigments produced in nature and distributed throughout the biological kingdom. Vibrio alginolyticus strain BTKKS3 produced DOPA-melanin was used in the study. BTKKS3 melanin inhibited biofilm formation by pathogenic bacteria and effectively decreased the activity of four inflammatory enzymes tested viz. cyclooxygenase, lipoxygenase, myeloperoxidase and nitric oxide synthase. Melanin proved to be less cytotoxic to mouse fibroblast cells with an IC50 value of 134.98 μg/mL. The sun protection factor value of commercial sunscreens was enhanced by 3.42 units by DOPA-melanin.


Vibrio alginolyticus Anti-biofilm Anti-inflammatory Sun protection factor 

Supplementary material

13765_2018_343_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)


  1. 1.
    Liu GY, Nizet V (2009) Color me bad: microbial pigments as virulence factors. Trends Microbiol 17(9):406–413CrossRefGoogle Scholar
  2. 2.
    Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D, Wang X (2010) Fossilized melanosomes and the color of Cretaceous dinosaurs and birds. Nature 463(7284):1075–1078CrossRefGoogle Scholar
  3. 3.
    Wogelius RA, Manning PL, Barden HE, Edwards NP, Webb SM, Sellers WI, Bergmann U (2011) Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333(6049):1622–1626CrossRefGoogle Scholar
  4. 4.
    Lindgren J, Uvdal P, Sjövall P, Nilsson DE, Engdahl A, Schultz BP, Thiel V (2012) Molecular preservation of the pigment melanin in fossil melanosomes. Nat Commun 3:824CrossRefGoogle Scholar
  5. 5.
    Plonka PM, Grabacka M (2006) Melanin synthesis in microorganisms: biotechnological and medical aspects. Acta Biochim Pol 53(3):429–443Google Scholar
  6. 6.
    Sajjan S, Yaligara V, Karegoudar TB (2010) Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK. J Microbiol Biotechnol 20(11):1513–1520CrossRefGoogle Scholar
  7. 7.
    Ivins BE, Holmes RK (1981) Factors affecting phaeomelanin production by a melanin-producing (mel) mutant of Vibrio cholerae. Infect Immun 34(3):895–899Google Scholar
  8. 8.
    Shivprasad S, Page WJ (1989) Catechol formation and melanization by Na+-dependent Azotobacter chroococcum: a protective mechanism for aeroadaptation? Appl Environ Microbiol 55(7):1811–1817Google Scholar
  9. 9.
    Yabuuchi E, Ohyama A (1972) Characterization of pyomelanin producing strains of Pseudomonas aeruginosa. Int J Syst Bacteriol 22(2):53–64CrossRefGoogle Scholar
  10. 10.
    Ruzafa C, Solano F, Sanchez-Amat A (1994) The protein encoded by the Shewanella colwelliana mel A gene is a p-hydroxy phenylpyruvate dioxygenase. FEMS Microbiol Lett 124(2):179–184CrossRefGoogle Scholar
  11. 11.
    Ruzafa C, Sanchez-Amat Antonio, Solano F (1995) Characterization of the melanogenic system in Vibrio cholera. ATCC 14035. Pigment Cell Res 8(3):147–152CrossRefGoogle Scholar
  12. 12.
    Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1):9–27CrossRefGoogle Scholar
  13. 13.
    Laxmi M, Kurian NK, Smitha S, Bhat SG (2014) Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens. Indian J Biotechnol 15:392–399Google Scholar
  14. 14.
    Bin L, Wei L, Xiaohong C, Mei J, Mingsheng D (2012) In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Ann Microbiol 62(4):1523–1530CrossRefGoogle Scholar
  15. 15.
    Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int J Biol Macromol 58:263–274CrossRefGoogle Scholar
  16. 16.
    Sajjan SS, Anjaneya O, Guruprasad BK, Anand SN, Suresh BM, Karegoudar TB (2013) Properties and functions of melanin pigment from Klebsiella sp. GSK. Korean J Microbiol Biotechnol 41(1):60–69CrossRefGoogle Scholar
  17. 17.
    Ju KY, Lee Y, Lee S, Park SB, Lee JK (2011) Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromol 12(3):625–632CrossRefGoogle Scholar
  18. 18.
    Kim BG, Kim S, Le H, Choi JW (2014) Wisdom from the human eye: a synthetic melanin radical scavenger for improved cycle life of Li–O2 battery. Chem Mater 26(16):4757–4764CrossRefGoogle Scholar
  19. 19.
    Eaton SS, Eaton GR, Berliner LJ (Eds) (2005) Biophysical studies of melanin. Biomedical EPR, part a: free radicals, metals, medicine, and physiology. Springer, New York, pp 125–146Google Scholar
  20. 20.
    Avramidis N, Kourounakis A, Hadjipetrou L, Senchuk V (1998) Antiinflammatory and immunomodulating properties of grape melanin. Inhibitory effects on paw edema and adjuvant induced disease. Arzneimittelforschung 48(7):764–771Google Scholar
  21. 21.
    Kurian NK, Nair HP, Bhat SG (2015) Evaluation of anti-inflammatory property of melanin from marine Bacillus spp. BTCZ31. Asian J Pharm Clin Res 8(3):251–255Google Scholar
  22. 22.
    Kaidbey KH, Agin PP, Sayre RM, Kligman AM (1979) Photoprotection by melanin—a comparison of black and Caucasian skin. J Am Acad Dermatol 1(3):249–260CrossRefGoogle Scholar
  23. 23.
    Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84(3):539–549CrossRefGoogle Scholar
  24. 24.
    Huang S, Pan Y, Gan D, Ouyang X, Tang S, Ekunwe SI, Wang H (2011) Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Med Chem Res 20(4):475–481CrossRefGoogle Scholar
  25. 25.
    Tarangini K, Mishra S (2014) Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnol Rep 4:139–146CrossRefGoogle Scholar
  26. 26.
    Kurian NK, Nair HP, Bhat SG (2014) Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise #305). Int J Curr Biotechnol 2(5):6–11Google Scholar
  27. 27.
    Reddy GSN, Prakash JSS, Matsumoto GI, Stackebrandt E, Shivaji S (2002) Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52(3):1017–1021Google Scholar
  28. 28.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  29. 29.
    Turick CE, Tisa LS, Caccavo F Jr (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68(5):2436–2444CrossRefGoogle Scholar
  30. 30.
    Fava F, Di Gioia D, Marchetti L (1993) Characterization of a pigment produced by Pseudomonas fluorescens during 3-chlorobenzoate co-metabolism. Chemosphere 27(5):825–835CrossRefGoogle Scholar
  31. 31.
    Yuan W, Burleigh SH, Dawson JO (2007) Melanin biosynthesis by Frankia strain CeI5. Physiol Plant 131(2):180–190Google Scholar
  32. 32.
    Ravishankar JP, Muruganandam V, Suryanarayanan TS (1995) Isolation and characterization of melanin from a marine fungus. Bot Mar 38(1–6):413–416Google Scholar
  33. 33.
    Guo J, Rao Z, Yang T, Man Z, Xu M, Zhang X (2014) High-level production of melanin by a novel isolate of Streptomyces kathirae. FEMS Microbiol Lett 357(1):85–91CrossRefGoogle Scholar
  34. 34.
    Enochs WS, Nilges MJ, Swartz HM (1993) A standardized test for the identification and characterization of melanins using electron paramagnetic resonance (EPR) spectroscopy. Pigment Cell Res 6(2):91–99CrossRefGoogle Scholar
  35. 35.
    Liyana-Pathirana CM, Shahidi F (2005) Antioxidant activity of commercial soft and hard wheat (Triticuma estivum L.) as affected by gastric pH conditions. J Agric Food Chem 53(7):2433–2440CrossRefGoogle Scholar
  36. 36.
    Dinis TC, Madeira VM, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315(1):161–169CrossRefGoogle Scholar
  37. 37.
    Coelho-Souza T, Martins N, Maia F, Frases S, Bonelli RR, Riley LW, Moreira BM (2014) Pyomelanin production: a rare phenotype in Acinetobacter baumannii. J Med Microbiol 63(1):152–154CrossRefGoogle Scholar
  38. 38.
    Laxmi M, Bhat SG (2014) Diversity characterization of Biofilm forming microorganisms in food sampled from local markets in Kochi, Kerala, India. Int J Recent Sci Res 5:1070–1075Google Scholar
  39. 39.
    Rode TM, Langsrud S, Holck A, Møretrø T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116(3):372–383CrossRefGoogle Scholar
  40. 40.
    Ayoub SS, Flower RJ, Rod J, Seed MP (Eds) (2010) In vitro assays for cyclooxygenase activity and inhibitor characterization. Cyclooxygenases. Humana Press, New York, pp 131–144Google Scholar
  41. 41.
    Axelrod B, Cheesbrough TM, Laakso S (1981) [53] Lipoxygenase from soybeans: eC 1.13. 11.12 Linoleate: oxygen oxidoreductase. Methods Enzymol 71:441–451CrossRefGoogle Scholar
  42. 42.
    Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78(3):206–209CrossRefGoogle Scholar
  43. 43.
    Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, Tenu JP (1990) Alterations of ribonucleotid ereductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 265(24):14143–14149Google Scholar
  44. 44.
    Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, Patil SV (2015) Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int J Cosmet Sci 37(1):98–107CrossRefGoogle Scholar
  45. 45.
    Sayre RM, Agin PP, LeVee GJ, Marlowe E (1979) A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol 29(3):559–566CrossRefGoogle Scholar
  46. 46.
    Mansur JDS, Breder MNR, Mansur MCDA, Azulay RD (1986) Determinaçäo do fator de proteçäo solar pore spectrofotometria. An Bras Dermatol 61(3):121–124Google Scholar
  47. 47.
    Arung ET, Wicaksono BD, Handoko YA, Kusuma IW, Yulia D, Sandra F (2009) Anti-cancer properties of diethylether extract of wood from sukun (Artocarpus altilis) in human breast cancer (T47D) cells. Trop J Pharm Res 8(4):317–324Google Scholar
  48. 48.
    Coyne VE, Al-Harthi L (1992) Induction of melanin biosynthesis in Vibrio cholera. Appl Environ Microbiol 58(9):2861–2865Google Scholar
  49. 49.
    Ivins BE, Holmes RK (1980) Isolation and characterization of melanin producing (mel) mutants of Vibrio cholerae. Infect Immun 27(3):721–729Google Scholar
  50. 50.
    Valeru SP, Rompikuntal PK, Ishikawa T, Vaitkevicius K, Sjöling Å, Dolganov N, Wai SN (2009) Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect Immun 77(3):935–942CrossRefGoogle Scholar
  51. 51.
    Blarzino C, Mosca L, Foppoli C, Coccia R, De Marco C, Rosei MA (1999) Lipoxygenase/H2O2-catalyzed oxidation of dihydroxy indoles: synthesis of melanin pigments and study of their antioxidant properties. Free Radic Biol Med 26(3):446–453CrossRefGoogle Scholar
  52. 52.
    Wang Z, Dillon J, Gaillard ER (2006) Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 82(2):474–479CrossRefGoogle Scholar
  53. 53.
    Różanowska M, Sarna T, Land EJ, Truscott TG (1999) Free radical scavenging properties of melanin: interaction of eu-and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26(5):518–525CrossRefGoogle Scholar
  54. 54.
    Kotob SI, Coon SL, Quintero EJ, Weiner RM (1995) Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol 61(4):1620–1622Google Scholar
  55. 55.
    Yoshida H, Tanaka Y, Nakayama K (1973) Production of 3, 4-dihydroxyphenyl-l-alanine (L-DOPA) and its derivatives by Vibrio tyrosinaticus. Agric Biol Chem 37(9):2121–2126Google Scholar
  56. 56.
    Møretrø T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S (2003) Biofilm formation and the presence of the intercellular adhesion locus ica among Staphylococci from food and food processing environments. Appl Environ Microbiol 69(9):5648–5655CrossRefGoogle Scholar
  57. 57.
    Heilmann C, Hussain M, Peters G, Gotz F (1997) Evidence for auto lysine mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24(5):1013–1024CrossRefGoogle Scholar
  58. 58.
    Yang MH, Yoon KD, Chin YW, Park JH, Kim J (2009) Phenolic compounds with radical scavenging and cyclooxygenase-2 (COX-2) inhibitory activities from Dioscorea opposita. Bioorg Med Chem 17(7):2689–2694CrossRefGoogle Scholar
  59. 59.
    Lee JY, Jang YW, Kang HS, Moon H, Sim SS, Kim CJ (2006) Anti-inflammatory action of phenolic compounds from Gastrodiaelata root. Arch Pharm Res 29(10):849–858CrossRefGoogle Scholar
  60. 60.
    Vijayan V, Jasmin C, Anas A, Kuttan SP, Vinothkumar S, Subrayan PP, Nair S (2017) Sponge-Associated Bacteria Produce Non-cytotoxic Melanin Which Protects Animal Cells from Photo-Toxicity. Appl Biochem Biotechnol 183(1):396–411CrossRefGoogle Scholar
  61. 61.
    Jara JR, Solano F, Garcia-Borron JC, Aroca P (1035) Lozano JA (1990) Regulation of mammalian melanogenesis II: the role of metal cations. Biochimica et Biophysica Acta-General Subjects 3:276–285Google Scholar
  62. 62.
    Riley PA (1997) Melanin. Int J Biochem Cell Biol 29(11):1235–1239CrossRefGoogle Scholar
  63. 63.
    Dong C, Yao Y (2012) Isolation, characterization of melanin derived from Ophiocordyceps sinensis, an entomogenous fungus endemic to the Tibetan Plateau. J Biosci Bioeng 113(4):474–479CrossRefGoogle Scholar
  64. 64.
    Herrling T, Jung K, Fuchs J (2007) The important role of melanin as protector against free radicals in skin. Sofw J 133(9):26Google Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyCochin University of Science and TechnologyKalamassery, CochinIndia

Personalised recommendations