Abdelbagi AO, Elmahi MA, Osman DG (2000) Chlorinated hydrocarbon insecticide residues in the Sudanese soils of limited or no pesticide use. Arab J Plant Protect 18:35–39
Google Scholar
Abdelbagi AO, Elmahi MA, Osman DG (2003) Organochlorine insecticides residues in sudanese soils of intensive pesticide use and in surface soil of Qurashi pesticide store. UK J Agric Sci 11:59–68
Google Scholar
Butrous (1999) Evaluation and assessment of obsolete and banned pesticides in five agricultural schemes. Report, 83–89, Sudan
Abubaker OAW (2007) Level and movement of pesticide contaminants in the dangerous area of Port Sudan Harbour and their impact on human and aquatic life. Dissertation, University of Khartoum
Babiker M (1998) Levels and movement of some pesticides in Qurashi store area. Hessahisa province, central Sudan, Dissertation, University of Khartoum
Abdelbagi AO, Mohamed AA (2006) Pesticide residues in the Sudanese environment. In: Proceedings of a national workshop on measures for import, storage, handling and use of pesticides and fertilizers. Friendship Hall, Khartoum, Sudan. Organized by the Sudanese Standards and Metrology Organization, Khartoum. Sudan. Aug 2007. pp 66–118
Environmental Protection Agency (EPA) (1999) Persistent bioaccumulative toxic (PBT) chemicals. Final Rule, Fed. Regist 64, 58666 58753
Meister RT (1992) Farm chemicals handbook ‘92. Meister Publishing Company, Willoughby
Google Scholar
Environmental Protection Agency (1992) National study of chemical residues in fish: U.S. environmental protection agency, office of science and technology, EPA- 823-R-92-008b, v. 2, variously paged. Appendix 115
Ritter L, Solomon KR, Forget J, Stemeroff MO, Leary C (2007) Persistent organic pollutants: an assessment report on: DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene polychlorinated 13 biphenyls. Dioxins and furans, Prepared for The International Programme on Chemical Safety (IPCS)
Guerin TF (1999) The anaerobic degradation of endosulfan by indigenous microorganisms from low oxygen soils and sediments. Environ Pollut 106:13–21
CAS
Article
Google Scholar
Shivaramaiah HM, Kennedy IR (2006) Biodegradation of Endosulfan by soil bacteria. J Enviorn Sci Health B 41:895–905
CAS
Article
Google Scholar
Siddique T, Okeke BC, Arshad M, Frankenberger WT (2003) Enrichment and isolation of endosulfan-degrading microorganisms. JEQ 32:47–54
CAS
Google Scholar
Shetty PK, Mitra J, Murthy NBK, Namitha KK, Sovitha KN, Raghu K (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermo---hyalospora MTCC 1384. Curr Sci 79:1381–1383
CAS
Google Scholar
Elmahi MA (1996) Distribution of chlorinated hydrocarbon pesticides residues in Sudan soil. M.Sc. Dissertation, University of Khartoum
Ali TM (2005) Naturally occurring soil microorganism in qurashi pesticides store and the surrounding Gezira soil areas and their potential in degrading Endosulfan α, β and lindane. Dissertation, University of Khartoum
Elsaid OG, Abdelbagi AO, Elmustafa EA (2010) Microbial degradation of endosulfan in carbon free media and selective media. Res J Agric Biol Sci 6(3):257–562
Google Scholar
Elsaid OG, Abdelbagi AO, Elsheikh EAE (2009) Effects of fertilizers (activators) in enhancing microbial degradation of endosulfan in soil. Res J Environ Toxicol 3(2):76–85
CAS
Article
Google Scholar
Elsaid OG, Abdelbagi AO (2010) Comparative biodegradation of endosulfan by mutant and their native microorganisms. Res J Agric Biol Sci 6(6):953–961
Google Scholar
Shaer IBS, Abdelbagi AO, Elmustafa EA, Ahmed SAI, Osama GE (2013) Biodegradation of pendimethalin by three strains of bacteria isolated from pesticides polluted soils. U K J Agric Sci 21(2):233–252
Google Scholar
Ishag ASA, Abdelbagi AO, Hammad AMA, Elmustafa EA, Osama EE, Hur J-H, Laing MD (2016) Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64:8491–8498
CAS
Article
Google Scholar
Barrow GI, Feltham RKA (2003) Cowan, and steel’s manual for identification of medical bacteria, 3rd edn. Press Syndicate of the University of Cambridge, Cambridge, p 317
Google Scholar
Thompson R, Marcelino A, Polz F (2002) Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30(9):2083–2088
CAS
Article
Google Scholar
Tepper EZ, Shilnikova VK, pereverzeva GI (1994) A manual of Microbiology (In Russian), 4th Edition, kolas Publishers Moscow. 170 p
Gi-Seok K, Ho-Yong S, Kee-Sun S (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl Microbiol Biotechnol 67:845–850
Article
Google Scholar
Mathava K, Ligy P (2006) Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioremediat J 10(4):179–190
Article
Google Scholar
Abdurruhman MA, Abdelbagi OA, Ahmed ASI (2015) Biodegradation of pendimethalin and atrazine by Pseudomonas pickettii isolated from pesticides polluted soil under laboratory conditions. J Biotechnol Sci Res 2(3):94–102
Google Scholar
El Zorgani GA (1982) The status of DDT residues in Sudan. Progress report. Agricultural Research Corporation, Wad Medani, Sudan
Kole RK, Saha J, Pal S, Chaudhuri S, Chowdhury A (1994) Bacterial degradation of the herbicide pendimethalin and activity evaluation of its metabolites. Bull Environ Contam Toxicol 52:779–786
CAS
Article
Google Scholar
Thangadurai P, Suresh S (2014) Biodegradation of endosulfan by soil bacterial cultures. Int. Biodeterior. Biodegrad 94:38–49
CAS
Article
Google Scholar
Byeoung-Soo P, Sung-Eun L (2004) Biotransformation of endosulfan by Anabaena sp. PCC 7120. Agric Chem Biotechnol 47(1):38–41
Google Scholar
Singh SB, Kulshrestha G (1991) Microbial degradation of pendimethalin. J. Environ Sci Health B26:309–321
CAS
Article
Google Scholar
Ulčnik A, Kralj CI, Pohleven F (2013) Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29(12):2239–2247
Article
Google Scholar
Megadi VB, Tallur PN, Hoskeri RS, Mulla SI, Ninnekar HZ (2010) Biodegradation of pendimethalin by Bacillus circulans. Indian J Biotechnol 9:173–177
CAS
Google Scholar
Okerentugba PO, Ezeronye OU (2003) Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. Afr J Biotechnol 2(9):288–292
CAS
Article
Google Scholar
Elsaid OG, Abdelbagi AO, Elsheikh EAE (2011) Accelerating the rate of endosulfan degradation by bacteria and actinomycetes. Int J Appl Environ Sci 6(1):11–21
Google Scholar
Singh PB, Sharma S, Saini HS, Chadha BS (2009) Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos. Lett Appl Microbiol 49:378–383
CAS
Article
Google Scholar
Khaled AO, Gamal HI, Ahamed IA, Abdul Rahman AA (2008) Biodegradation kinetics of dicofol by selected microorganisms. J Pest Biochem Physiol 91:180–185
Article
Google Scholar
Rigas F, Papadopoulou K, Dritsa V (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma austral via response surface methodology. J Hazard Mater 140(1–2):325–332
CAS
Article
Google Scholar
Awasthi N, Manikam N, Kumar A (1997) Biodegradation of endosulfan by a bacterial co-culture. Bull Environ Contam Toxicol 59:928–934
CAS
Article
Google Scholar
Jesitha K, Nimisha KM, Manjusha CM, Harikumar PS (2015) Biodegradation of endosulfan by Pseudomonas fluorescens. Environ Process 2(1):225–240
CAS
Article
Google Scholar
Kullman SW, Matsumura F (1996) Metabolic pathway utilised by phanerochete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600
CAS
Google Scholar
Katayama A, Matsumura F (1993) Degradation of Organochlorine pesticides particularly endosulfan by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065
CAS
Article
Google Scholar
Sutherland TD, Weir KM, Lacey MJ, Horne I, Russsel RJ, Oakeshott JG (2002) Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J Appl Microbiol 92:541–548
CAS
Article
Google Scholar
Miles JRW, May P (1979) Degradation of Endosulfan and it is Metabolites by Mixed Culture of Soil Microorganisms. Bull Environ Contam Toxicol 23:13–16
CAS
Article
Google Scholar
Hai-yan N, Fei W, Na L, Li Y, Da Chen, Qin H, Jian H, Qing H (2016) The nitroreductase PNR is responsible for the initial step of pendimethalin degradation in Bacillus subtilis Y3. Appl Environ Microbiol. doi:10.1128/AEM.01771-16
Google Scholar
Elsayed BB, El-Nady MF (2013) Bioremediation of pendimethalin-contaminated soil. Afr J Microbiol Res 7(21):2574–2588
CAS
Article
Google Scholar