Skip to main content

Advertisement

Log in

Assessing bioavailability and genotoxicity of heavy metals and metallic nanoparticles simultaneously using dual-sensing Escherichia coli whole-cell bioreporters

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Genetically engineered bacterial strains called whole-cell bioreporters (WCBs) generated by fusing the promoter region of stress-responsive genes and reporter genes have been widely used as biosensors to detect toxic materials in the environment. In this study, we report a dual-sensing WCB harboring recAp::egfp and zntAp::mcherry to measure the genotoxicity and bioavailability of heavy metals and metallic nanoparticles (NPs) simultaneously. Since the dual-sensing WCB harbored recAp::egfp and zntAp::mcherry, the genotoxicity and bioavailability of heavy metals and metallic NPs that activate ZntR would be assessed by measuring the fluorescence signal of enhanced green fluorescent protein (eGFP) and mCherry, respectively. Among the tested heavy metal(loid)s, only Cr induced both eGFP and mCherry expression, and some of them only induced mCherry, thereby suggesting that Cr is genotoxic. In case of the tested metallic NPs, Ti2O NPs, ZnO NPs, and Au NPs showed weak inhibitory effects on growth, but the eGFP was not induced. It was inferred that the tested NPs were not genotoxic and the inhibitory effects would not be related to direct DNA damage pathways. In addition, it was observed that ZnO NPs induced mCherry expression, indicating that the Zn ion was dissolved from the NPs. Although the dual-sensing WCB described here was limited to ZnO NPs, WCBs would be an alternative tool to investigate the dissolution of metallic NPs when the corresponding metal ion sensing systems were available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baumann B, van der Meer JR (2007) Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J Agric Food Chem 55:2115–2120

    Article  CAS  Google Scholar 

  • Beard SJ, Hashim R, Membrillo-Hernández J, Hughes MN, Poole RK (1997) Zinc (II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25:883–891

    Article  CAS  Google Scholar 

  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068

    Article  CAS  Google Scholar 

  • Bianchi V, Levis AG (1984) Mechanisms of chromium genotoxicity. Toxicol Environ Chem 9:1–25

    Article  CAS  Google Scholar 

  • Bianchi V, Levis AG (1988) Review of genetic effects and mechanisms of action of chromium compounds. Sci Total Environ 71:351–355

    Article  CAS  Google Scholar 

  • Binet MR, Poole RK (2000) Cd (II), Pb(II) and Zn (II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett 473:67–70

    Article  CAS  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  CAS  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragón A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  CAS  Google Scholar 

  • Cho W-S, Duffin R, Howie SE, Scotton CJ, Wallace WA, MacNee W, Bradley M, Megson IL, Donaldson K (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27

    Article  CAS  Google Scholar 

  • De Flora S, Bagnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds. A review. Mutat Res Rev Genet Toxicol 238:99–172

    Article  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Gireesh-Babu P, Chaudhari A (2012) Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol Biol Rep 39:11225–11229

    Article  CAS  Google Scholar 

  • Good L, Nazar RN (1992) An improved thermal cycle for two-step PCR-based targeted mutagenesis. Nucleic Acids Res 20:4934

    Article  CAS  Google Scholar 

  • Heggelund LR, Diez-Ortiz M, Lofts S, Lahive E, Jurkschat K, Wojnarowicz J, Cedergreen N, Spurgeon D, Svendsen C (2014) Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8:559–572

    Article  CAS  Google Scholar 

  • Hynninen A, Virta M (2010) Whole-cell bioreporters for the detection of bioavailable metals. Adv Biochem Eng Biotechnol 118:31–63

    CAS  Google Scholar 

  • Ivask A, Francois M, Kahru A, Dubourguier HC, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55:147–156

    Article  CAS  Google Scholar 

  • Jose S, Jayesh P, Mohandas A, Philip R, Singh IB (2011) Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Mar Environ Res 71:169–177

    Article  CAS  Google Scholar 

  • Kenyon CJ, Brent R, Ptashne M, Walker GC (1982) Regulation of damage-inducible genes in Escherichia coli. J Mol Biol 160:445–457

    Article  CAS  Google Scholar 

  • Kim SW, An Y-J (2012) Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 95:243–253

    Article  CAS  Google Scholar 

  • Kwak JI, Lee WM, Kim SW, An YJ (2014) Interaction of citrate-coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity in Eisenia andrei. J Appl Toxicol 34:1145–1154

    Article  CAS  Google Scholar 

  • Lee W-M, An Y-J (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544

    Article  CAS  Google Scholar 

  • Lee W-M, An Y-J (2015) Evidence of three-level trophic transfer of quantum dots in an aquatic food chain by using bioimaging. Nanotoxicology 9:407–412

    Article  CAS  Google Scholar 

  • Lee W-M, Yoon S-J, Shin Y-J, An Y-J (2015) Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Environ Pollut 201:10–16

    Article  CAS  Google Scholar 

  • Maderova L, Paton GI (2013) Deployment of microbial sensors to assess zinc bioavailability and toxicity in soils. Soil Biol Biochem 66:222–228

    Article  CAS  Google Scholar 

  • Min J, Kim EJ, LaRossa RA, Gu MB (1999) Distinct responses of a recA:luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat Res 442:61–68

    Article  CAS  Google Scholar 

  • Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E (2012) The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232

    Article  CAS  Google Scholar 

  • Mitchell RJ, Gu MB (2004) Construction and characterization of novel dual stress-responsive bacterial biosensors. Biosens Bioelectron 19:977–985

    Article  CAS  Google Scholar 

  • Nam SH, Kim SW, An YJ (2013) No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. J Appl Toxicol 33:1061–1069

    Article  CAS  Google Scholar 

  • Nam S-H, Lee W-M, Shin Y-J, Yoon S-J, Kim SW, Kwak JI, An Y-J (2014) Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems. Water Res 48:126–136

    Article  CAS  Google Scholar 

  • Norman A, Hestbjerg Hansen L, Sorensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 71:2338–2346

    Article  CAS  Google Scholar 

  • Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229

    Article  CAS  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186:1586–1593

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 2. Cold spring harbor laboratory press, New York

    Google Scholar 

  • Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96

    Article  CAS  Google Scholar 

  • Song Y, Jian B, Tian S, Tang H, Liu Z, Li C, Jia J, Huang WE, Zhang X, Li G (2014) A whole-cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environ Pollut 195:178–184

    Article  CAS  Google Scholar 

  • Storelli MM, Barone G (2013) Toxic metals (hg, pb, and cd) in commercially important demersal fish from mediterranean sea: contamination levels and dietary exposure assessment. J Food Sci 78:T362–T366

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad M (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology. Springer, Berlin, pp 133–164

    Book  Google Scholar 

  • Thompson CM, Fedorov YB, Daniel D, Suh M, Proctor DM, Kuriakose L, Haws LC, Harris MA (2012) Assessment of Cr(VI)-induced cytotoxicity and genotoxicity using high content analysis. PLoS One 7:b63

    Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  Google Scholar 

  • van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  Google Scholar 

  • Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420

    Google Scholar 

  • Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Schoenfeld D, Meng H, Lin S, Wang X (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235

    Article  CAS  Google Scholar 

  • Xiong A-S, Yao Q-H, Peng R-H, Li X, Fan H-Q, Cheng Z-M, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32:e98

    Article  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  Google Scholar 

  • Yoon Y, Kang Y, Chae Y, Kim S, Lee Y, Jeong SW, An YJ (2016) Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environ Sci Pollut Res 23:2353–2361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by Konkuk University in 2013 (to Y.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngdae Yoon.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Yoon, Y. Assessing bioavailability and genotoxicity of heavy metals and metallic nanoparticles simultaneously using dual-sensing Escherichia coli whole-cell bioreporters. Appl Biol Chem 59, 661–668 (2016). https://doi.org/10.1007/s13765-016-0206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0206-3

Keywords

Navigation