Skip to main content

Advertisement

Log in

Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Many studies have shown that oxidative stress induced by hydrogen peroxide can lead to neuronal cell death. In this study, protective effects of the ethanol extract of A. lappa L. roots against oxidative stress in PC12 cells were measured by 2′, 7′-dichlorofluorescein diacetate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Oxidative stress contributes to the memory deficits induced by Beta-amyloid1-42 in mice. Treatment with the ethanol extract of A. lappa L. roots improved working and reference memory in mice in the Y-maze and passive avoidance tests. To detect the lipid peroxidation levels, malondialdehyde was measured. To purify the bioactive compound, active fractions and components of A. lappa L. roots were isolated by partitioning, open column chromatography, TLC, high-performance liquid chromatography, electron ionization mass spectrometry, and 1H/13C-nuclear magnetic resonance. We identified the bioactive compound as quinic acid, which is a powerful antioxidant agent. Ultimately, the roots of A. lappa L. may become available as an antioxidant food for Alzheimer’s disease patients and those with other oxidative stress-induced disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abu-Amsha R, Croft KD, Puddey IB, Proudfoot JM, Beilin LJ (1996) Phenolic content of various beverages determines the extent of inhibition of human serum and low-density lipoprotein oxidation in vitro: identification and mechanism of action of some cinnamic acid derivatives from red wine. Clin Sci (Lond) 91:449–458

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–127

    Article  CAS  Google Scholar 

  • Akhlaghi M, Bandy B (2012) Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid Med Cell Longev. doi:10.1155/2012/782321

    Google Scholar 

  • Alothman M, Bhat R, Karim AA (2009) Effects of radiation processing on phytochemicals and antioxidants in plant produce. J Food Sci Technol 20:201–212

    Article  CAS  Google Scholar 

  • Belkacemi A, Doggui S, Dao L, Ramassamy C (2011) Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev Mol Med. doi:10.1017/S1462399411002055

    Google Scholar 

  • Boldogh I, Kruzel ML (2008) Colostrinin: an oxidative stress modulator for prevention and treatment of agerelated disorders. J Alzheimers Dis 13:303–321

    CAS  Google Scholar 

  • Brückner M, Westphal S, Domschke W, Kucharzik T, Lügering A (2012) Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohns Colitis 2:226–235

    Article  Google Scholar 

  • Castañer O, Covas MI, Khymenets O, Nyyssonen K, Konstantinidou V, Zunft HF, de la Torre R, Muñoz-Aguayo D, Vila J, Fitó M (2012) Protection of LDL from oxidation by olive oil polyphenols is associated with a down regulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr 95:1238–1244

    Article  Google Scholar 

  • Castelluccio C, Paganga G, Melikian N, Bolwell GP, Pridham J, Sampson J, Rice-Evans C (1995) Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett 368:188–192

    Article  CAS  Google Scholar 

  • Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, Leung GP, Yu PH, Chan SW (2011) A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19:245–254

    Article  CAS  Google Scholar 

  • Choi SJ, Kim MJ, Jin Heo H, Kim JK, Jin Jun W, Kim HK, Kim EK, Ok Kim M, Yon Cho H, Hwang HJ, Jun Kim Y, Shin DH (2009) Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity. Amyloid 16:15–24

    Article  CAS  Google Scholar 

  • Choi DY, Lee YJ, Hong JT, Lee HJ (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87:144–153

    Article  CAS  Google Scholar 

  • Choi SJ, Kim JK, Kim HK, Harris K, Kim CJ, Park GG, Park CS, Shin DH (2013) 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. J Med Food 11:977–983

    Article  Google Scholar 

  • Chung IM, Kim MY, Park WH, Moon HI (2009) Quinic acid derivatives from Saussurea triangulata attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells. J Enzyme Inhib Med Chem 24:188–191

    Article  CAS  Google Scholar 

  • Cioanca O, Hritcu L, Mihasan M, Hancianu M (2013) Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid beta(1-42) rat model of Alzheimer’s disease. Physiol Behav 15:193–202

    Article  Google Scholar 

  • de Almeida AB, Luiz-Ferreira A, Cola M, Di Pietro Magri L, Batista LM, de Paiva JA, Trigo JR, Souza-Brito AR (2012) Anti-ulcerogenic mechanisms of the sesquiterpene lactone onopordopicrin-enriched fraction from Arctium lappa L. (Asteraceae): role of somatostatin, gastrin, and endogenous sulfhydryls and nitric oxide. J Med Food 4:378–383

    Article  Google Scholar 

  • Duh P (1998) Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free-radical and active oxygen. J Am Oil Chem Soc 75:455–461

    Article  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Exp Biol Med 222:236–245

    Article  CAS  Google Scholar 

  • Foley S, Navaratnam S, McGarvey DJ, Land EJ, Truscott TG, Rice-Evans CA (1999) Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radic Biol Med 26:1202–1208

    Article  CAS  Google Scholar 

  • Gentil M, Pereira JV, Sousa YT, Pietro R, Neto MD, Vansan LP, de Castro França S (2006) In vitro evaluation of the antibacterial activity of Arctium lappa as a phytotherapeutic agent used in intracanal dressings. Phytother Res 3:184–186

    Article  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  Google Scholar 

  • Gonthier MP, Verny MA, Besson C, Rémésy C, Scalbert A (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr Sci 133:1853–1859

    CAS  Google Scholar 

  • Gresele P, Pignatelli P, Guglielmini G, Carnevale R, Mezzasoma AM, Ghiselli A, Momi S, Violi F (2008) Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr 138:1602–1608

    CAS  Google Scholar 

  • Gumbinger HG, Vahlensieck H, Winterhoff H (1993) Metabolism of caffeic acid in the isolated perfused rat liver. Planta Med 59:491–493

    Article  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  CAS  Google Scholar 

  • Heo HJ, Park YJ, Suh YM, Choi SJ, Kim MJ, Cho HY, Chang YJ, Hong B, Kim HK, Kim E, Kim CJ, Kim BG, Shin DH (2003) Effects of oleamide on choline acetyltransferase and cognitive activities. Biosci Biotechnol Biochem 67:1284–1291

    Article  CAS  Google Scholar 

  • Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O (2002) Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 20:279–283

    Article  CAS  Google Scholar 

  • Ito H, Sun XL, Watanabe M, Okamoto M, Hatano T (2008) Chlorogenic acid and its metabolite -coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Biosci Biotechnol Biochem 72:885–888

    Article  CAS  Google Scholar 

  • Kanupriya, Prasad D, Sai Ram M, Kumar R, Sawhney RC, Sharma SK, Ilavazhagan G, Kumar D, Banerjee PK (2005) Cytoprotective and antioxidant activity of Rhodiola imbricata against tert-butyl hydroperoxide induced oxidative injury in U-937 human macrophages. J Neurol Transl Neurosci 275:1–6

  • Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H (2000) Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Chem Res Toxicol 38:467–471

    Article  CAS  Google Scholar 

  • Kim DO, Lee KW, Lee HJ, Lee CY (2002) Vitamin C equivalent an antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713–3717

    Article  CAS  Google Scholar 

  • Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Li Y (2009) Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience 163:741–749

    Article  CAS  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    CAS  Google Scholar 

  • Lin CC, Lu JM, Yang JJ, Chuang SC, Ujiie T (1996) Anti-inflammatory and radical scavenge effects of Arctium lappa. Am J Chin Med 2:127–137

    Article  Google Scholar 

  • Lin SC, Chung TC, Lin CC, Ueng TH, Lin YH, Lin SY, Wang LY (2000) Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage. Am J Chin Med 28:163–173

    Article  CAS  Google Scholar 

  • Lin SC, Lin CH, Lin CC, Lin YH, Chen CF, Chen IC, Wang LY (2002) Hepatoprotective effects of Arctium lappa Linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride. J Biomed Sci 5:401–409

    Google Scholar 

  • Lloyd AG, Arthur ST (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2425

    Article  Google Scholar 

  • Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. Neurosci Res 1:3036–3040

    Article  Google Scholar 

  • Maruta Y, Kawabata J, Niki R (1995) Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.). J Agric Food Chem 43:2592–2595

    Article  CAS  Google Scholar 

  • Monji A, Utsumi H, Ueda T, Imoto T, Yoshida I, Hashioka S, Tashiro K, Tashiro N (2001) The relationship between the aggregational state of the amyloid-beta peptides and free radical generation by the peptides. J Neurochem 77:1425–1432

    Article  CAS  Google Scholar 

  • Nardini M, D’Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C (1995) Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic Biol Med 19:541–552

    Article  CAS  Google Scholar 

  • Ni Y, Zhao B, Hou J, Xin W (1996) Preventive effect of Ginkgo biloba extract on apoptosis in rat cerebellar neuronal cells induced by hydroxyl radicals. Neurosci Lett 214:115–118

    Article  CAS  Google Scholar 

  • Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38:413–419

    Article  CAS  Google Scholar 

  • Oue H, Miyamoto Y, Koretake K, Okada S, Doi K, Jung CG, Michikawa M, Akagawa Y (2014) Tooth loss might not alter molecular pathogenesis in an aged transgenic Alzheimer’s disease model mouse. Gerodontology. doi:10.1111/ger.12153

    Google Scholar 

  • Ozguner F, Bardak Y, Comlekci S (2006) Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: a comparative study. Mol Cell Biochem 282:83–88

    Article  CAS  Google Scholar 

  • Predes FS, Ruiz AL, Carvalho JE, Foglio MA, Dolder H (2011) Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement Altern Med 15:1472–1477

    Google Scholar 

  • Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J (2012) Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res Rev 12:1238–1244

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res 33:2390–2400

    Article  CAS  Google Scholar 

  • Sathisha UV, Jayaram S, Harish Nayaka MA, Dharmesh SM (2007) Inhibition of galectin-3 mediated cellular interactions by pectic polysaccharides from dietary sources. Glycoconj J 8:497–507

    Article  Google Scholar 

  • Shaerzadeh F, Ahmadiani A, Esmaeili MA, Ansari N, Asadi S, Tusi SK, Sonboli A, Ghahremanzamaneh M, Khodagholi F (2011) Antioxidant and antiglycating activities of Salvia sahendica and its protective effect against oxidative stress in neuron-like PC12 cells. J Nat Med 65:455–465

    Article  CAS  Google Scholar 

  • Shibata H, Sakamoto M, Kono Y (1999) Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci Biotechnol Biochem 63:1295–1297

    Article  CAS  Google Scholar 

  • Simonetti P, Gardana P, Pietta P (2001) Plasma levels of caffeic acid and antioxidant status after red wine intake. J Agric Food Chem 49:5964–5968

    Article  CAS  Google Scholar 

  • Sohn EH, Jang SA, Joo H, Park S, Kang SC, Lee CH, Kim SY (2011) Anti-allergic and anti-inflammatory effects of butanol extract from Arctium lappa L. Clin Mol Allergy. doi:10.1186/1476-7961-9-4

    Google Scholar 

  • Soni KB, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–275

    CAS  Google Scholar 

  • Strimpakos AS., Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    Article  CAS  Google Scholar 

  • Thuong PT, Hung TM, Ngoc TM, Ha do T, Min BS, Kwack SJ, Kang TS, Choi JS, Bae K (2010) Antioxidant activities of coumarins from Korean medicinal plants and their structure-activity relationships. Phytother Res 24:101–106

    Article  CAS  Google Scholar 

  • Tian X, Guo LP, Hu XL, Huang J, Fan YH, Ren TS, Zhao QC (2014) Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells. Cell Mol Neurobiol 35:335–344

    Article  Google Scholar 

  • Uang YS, Kang FL, Hsu KY (1995) Determination of caffeic acid in rabbit plasma by high-performance liquid chromatography. Biomed Eng 3:43–49

    Google Scholar 

  • Venkatesan N, Punithavathi V, Arumugam V (2000) Curcumin prevents adriamycin nephrotoxicity in rats. Br J Pharmacol 129:121–234

    Article  Google Scholar 

  • Wang SW, Wang YJ, Su YJ, Zhou WW, Yang SG, Zhang R, Zhao M, Li YN, Zhang ZP, Zhan DW, Liu RT (2012) Rutin inhibits beta-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology 33:482–490

    Article  Google Scholar 

  • Xie T, Wang WP, Mao ZF, Qu ZZ, Luan SQ, Jia LJ, Kan MC (2012) Effects of epigallocatechin-3-gallate on pentylenetetrazole-inducing kindling, cognitive impairment and oxidative stress in rats. Neurosci Lett 516:237–241

    Article  CAS  Google Scholar 

  • Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, Zhang H, Wang YJ, Liu RT (2014) Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Abeta oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 264:173–180

    Article  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing an neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hoon Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y.K., Choi, S.J., Kim, C.R. et al. Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model. Appl Biol Chem 59, 553–565 (2016). https://doi.org/10.1007/s13765-016-0195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0195-2

Keywords