Applied Biological Chemistry

, Volume 59, Issue 1, pp 9–14 | Cite as

Identification and formation pattern of metabolites of cyazofamid by soil fungus Cunninghamella elegans

  • Hyeri Lee
  • Eenhye Kim
  • Yongho Shin
  • Jong-Hwa Lee
  • Hor-Gil Hur
  • Jeong-Han Kim
Article

Abstract

This study was performed to investigate the formation of microbial metabolites from cyazofamid by the soil fungus Cunninghamella elegans. The incubation of cyazofamid with C. elegans was conducted for 10 days. Cyazofamid disappeared after 7 days of incubation, producing three metabolites. Metabolites identified by liquid chromatography–tandem mass spectrometry were 4-chloro-5-(4-(hydroxymethyl)phenyl)-imidazole-2-carbonitrile (CHCN), 4-(4-chloro-2-cyanoimidazole-5-yl)benzoic acid (CCBA) and 4-chloro-2-cyano-5-(4-(hydroxymethyl)phenyl)N,N-dimethyl-1H-imidazole-1-sulfonamide (CCHS). A new metabolite, CCHS, was further confirmed by 1H-13C HSQC (heteronuclear single-quantum correlation) using nuclear magnetic resonance. As a possible metabolic pathway, cyazofamid could be oxidized to CCHS, degraded to CHCN and further oxidized to CCBA. The metabolic system of C. elegans would be a powerful tool for predicting and identifying phase I metabolites that could be formed in mammalian systems.

Keywords

Cunninghamella elegans Cyazofamid Liquid chromatography–tandem mass spectrometry Metabolite Nuclear magnetic resonance 

References

  1. Abass K, Reponen P, Mattila S, Rautio A, Pelkonen O (2014) Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models. Toxicol Lett 224:300–309CrossRefGoogle Scholar
  2. Amadio J, Gordon K, Murphy CD (2010) Biotransformation of flurbiprofen by Cunninghamella species. Appl Environ Microbiol 76:6299–6303CrossRefGoogle Scholar
  3. Asha S, Vidyavathi M (2009) Cunninghamella - A microbial model for drug metabolism studies: a review. Biotechnol Adv 27:16–29CrossRefGoogle Scholar
  4. Choi JH, El-Aty AMA, Park YS, Cho SK, Shim JH (2007) The assessment of carbendazim, cyazofamid, diethofencarb and pyrimethanil residue levels in P-ginseng (C.A. Meyer) by HPLC. Bull Korean Chem Soc 28:369–372CrossRefGoogle Scholar
  5. Evaluation Report Cyazofamid (2004) Food safety commission pesticides experts committee. https://www.fsc.go.jp/english/evaluationreports/pesticide/cyazofamid_fullreport.pdf
  6. Hangler M, Jensen B, Ronhede S, Sorensen SR (2007) Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiol Lett 268:254–260CrossRefGoogle Scholar
  7. Hodgson E, Rose RL (2008) Metabolic interactions of agrochemicals in humans. Pest Manag Sci 64:617–621CrossRefGoogle Scholar
  8. Kang SI, Kang SY, Kanaly RA, Lee E, Lim Y, Hur HG (2009) Rapid oxidation of ring methyl groups is the primary mechanism of biotransformation of gemfibrozil by the fungus Cunninghamella elegans. Arch Microbiol 191:509–517CrossRefGoogle Scholar
  9. Keum YS, Lee YH, Kim JH (2009) Metabolism of methoxychlor by Cunninghamella elegans ATCC36112. J Agric Food Chem 57:7931–7937CrossRefGoogle Scholar
  10. Lee H et al (2012) Establishment of analytical method for cyazofamid residue in apple, mandarin, Korean cabbage, green pepper, potato and soybean. J Korean Soc Appl Biol Chem 55:241–247CrossRefGoogle Scholar
  11. Lee H, Kim E, Lee JH, Sung JH, Choi H, Kim JH (2014) Analysis of cyazofamid and its metabolite in the environmental and crop samples using LC-MS/MS. Bull Environ Contam Toxicol 93:586–590CrossRefGoogle Scholar
  12. Mitani S, Araki S, Takii Y, Ohshima T, Matsuo N, Miyoshi H (2001) The biochemical mode of action of the novel selective fungicide cyazofamid: specific inhibition of mitochondrial complex III in Phythium spinosum. Pestic Biochem Phys 71:107–115CrossRefGoogle Scholar
  13. Moody JD, Zhang DL, Heinze TM, Cerniglia CE (2000) Transformation of amoxapine by Cunninghamella elegans. Appl Environ Microb 66:3646–3649CrossRefGoogle Scholar
  14. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2002) Biotransformation of mirtazapine by Cunninghamella elegans. Drug Metab Dispos 30:1274–1279CrossRefGoogle Scholar
  15. Pestcide Fact Sheet Cyazofamid (2004). United States Environmental Protection Agency. http://www.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-085651_01-Sep-04.pdf
  16. Pothuluri JV, Freeman JP, Heinze TM, Beger RD, Cerniglia CE (2000) Biotransformation of vinclozolin by the fungus Cunninghamella elegans. J Agr Food Chem 48:6138–6148CrossRefGoogle Scholar
  17. Rydevik A, Thevis M, Krug O, Bondesson U, Hedeland M (2013) The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs). Xenobiotica 43:409–420CrossRefGoogle Scholar
  18. Schocken MJ, Mao J, Schabacker DJ (1997) Microbial transformations of the fungicide cyprodinil (CGA-219417). J Agric Food Chem 45:3647–3651CrossRefGoogle Scholar
  19. Singh N, Tandon S (2015) Dissipation kinetics and leaching of cyazofamid fungicide in texturally different agricultural soils. Int J Environ Sci Technol 12:2475–2484CrossRefGoogle Scholar
  20. Slade M, Casida JE (1970) Metabolic fate of 3,4,5- and 2,3,5-trimethylphenyl methylcarbamates, the major constituents in Landrin insecticide. J Agric Food Chem 18:467–474CrossRefGoogle Scholar
  21. Suzuki T, Casida JE (1981) Metabolites of diuron, linuron, and methazole formed by liver microsomal-enzymes and spinach plants. J Agric Food Chem 29:1027–1033CrossRefGoogle Scholar
  22. Tandon S, Singh N (2015) Dissipation kinetics of cyazofamid in water. J Liq Chromatogr Relat Technol 38:993–996CrossRefGoogle Scholar
  23. Tomlin C (2009) The pesticide manual: a world compendium, 15th edn. British Crop Protection Council, AltonGoogle Scholar
  24. Tseng SH et al (2009) Analysis of 81 pesticides and metabolite residues in fruits and vegetables by diatomaceous earth column extraction and LC/MS/MS determination. J Food Drug Anal 17:319–332Google Scholar
  25. Zhang DL, Evans FE, Freeman JP, Yang YF, Deck J, Cerniglia CE (1996) Formation of mammalian metabolites of cyclobenzaprine by the fungus, Cunninghamella elegans. Chem Biol Interact 102:79–92CrossRefGoogle Scholar
  26. Zhu YZ, Keum YS, Yang L, Lee H, Park H, Kim JH (2010) Metabolism of a fungicide mepanipyrim by soil fungus Cunninghamella elegans ATCC36112. J Agric Food Chem 58:12379–12384CrossRefGoogle Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2015

Authors and Affiliations

  • Hyeri Lee
    • 1
    • 2
  • Eenhye Kim
    • 1
  • Yongho Shin
    • 1
  • Jong-Hwa Lee
    • 1
  • Hor-Gil Hur
    • 3
  • Jeong-Han Kim
    • 1
  1. 1.Department of Agricultural Biotechnology and Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Environmental Measurement and Analysis CenterNational Institute of Environmental ResearchIncheonRepublic of Korea
  3. 3.Department of Environmental Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea

Personalised recommendations