Skip to main content
Log in

Genetic and molecular regulation of flower pigmentation in soybean

  • Review
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Flower color is one of the key traits, which has been widely considered for genetic studies on soybean. A variety of flower colors, such as dark purple, purple, purple blue, purple throat, magenta, pink, near white, and white, has been identified in cultivated soybean (Glycine max). Out of the 19,649 soybean accessions deposited in the United States Department of Agriculture-Germplasm Resources Information Network database, 67 % have purple flowers, 32 % have white flowers, and merely 1 % have flowers with different colors. In contrast, almost all accessions of wild soybean (Glycine soja) have only purple flowers. Flavonoids, mainly anthocyanins, are the most common pigments contributing to flower coloration in soybean. In the recent decades, the flavonoid biosynthesis pathway for anthocyanins has been well established, and some of the genes controlling flower color in soybean have been identified and characterized. Flower pigmentation of soybean is mainly controlled by six independent loci (W1, W2, W3, W4, Wm, and Wp) along with the combination of various other factors such as anthocyanin structure, vacuolar pH, and co-pigments. In this review, we summarize the current status of genetic and molecular regulation of flower pigmentation in cultivated and wild varieties of soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Buzzell RI, Buttery BR, Bernard RL (1977) Inheritance and linkage of magenta flower gene in soybeans. Can J Genet Cytol 19:749–751

    Article  Google Scholar 

  • Buzzell RI, Buttery BR, MacTavish DC (1987) Biochemical genetics of black pigmentation of soybean seed. J Hered 78:53–54

    Google Scholar 

  • Chen Y, Nelson RL (2004) Identification and characterization of a white-flowered wild soybean plant. Crop Sci 44:339–342

    Article  Google Scholar 

  • Chuck G, Robbins T, Nijjar C, Ralston E, Courtney-Gutterson N, Dooner HK (1993) Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5:371–378

    Article  CAS  Google Scholar 

  • deVlaming P, Schram AW, Wiering H (1983) Genes affecting flower color and pH of flower limb homogenates in Petunia hybrida. Theor Appl Genet 66:271–278

    Article  CAS  Google Scholar 

  • Fasoula DA, Stephens PA, Nickell CD, Vodkin LO (1995) Cosegregation of purple-throat flower color with dihydroflavonol reductase polymorphism in soybean. Crop Sci 35:1028–1031

    Article  CAS  Google Scholar 

  • Forkmann G (1991) Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed 106:1–26

    Article  CAS  Google Scholar 

  • Gillman JD, Tetlow A, Lee JD, Shannon JG, Bilyeu K (2011) Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol 11:155

    Article  CAS  Google Scholar 

  • Gollop R, Farhi S, Perl A (2001) Regulation of the leucoanthocyanidins dioxygenase gene expression in Vitis vinifera. Plant Sci 161:579–588

    Article  CAS  Google Scholar 

  • Gould KS (2004) Nature’s Swiss army knife: the diverse of protective roles of anthocyanins in leaves. J Biomed Biotechnol 5:314–320

    Article  Google Scholar 

  • Groose RW, Palmer RG (1991) Gene action governing anthocyanin pigmentation in soybean. J Hered 82:498–501

    Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  Google Scholar 

  • Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS (2010) Ectopic expression of apple F3H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol 153:806–820

    Article  CAS  Google Scholar 

  • Harborne JB (1967) Comparative biochemistry of the flavonoids. Academic Press, London

    Google Scholar 

  • Hartwig EE, Hinson K (1962) Inheritance of flower color of soybeans. Crop Sci 2:152–153

    Article  Google Scholar 

  • He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, Reeves MJ, Duan CQ (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  Google Scholar 

  • Hostel W (1981) In the biochemistry of plants. In: Stumpf W, Conn PM (eds) Secondary plants products, vol 7. Academic press, New York, pp 725–753

    Chapter  Google Scholar 

  • Iwashina T, Githiri SM, Benitez ER, Takemura T, Kitajima J, Takahashi R (2007) Analysis of flavonoids in flower petals of soybean near-isogenic lines for flower and pubescence color genes. J Hered 98:250–257

    Article  CAS  Google Scholar 

  • Iwashina T, Oyoo ME, Khan NA, Matsumura H, Takahashi R (2008) Analysis of flavonoids in flower petals of soybean flower color variants. Crop Sci 48:1918–1924

    Article  CAS  Google Scholar 

  • Johnson EOC, Stephens PA, Fasoula DA, Nickell CD, Vodkin LO (1998) Instability of a novel multicolored flower trait in inbred and outcrossed soybean lines. J Hered 89:508–515

    Article  Google Scholar 

  • Koes RE, Spelt CE, Reif HJ, van den Elzen PJ, Veltkamp E, Mol JN (1986) Floral tissue of Petunia hybrida (V30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Res 14:5229–5239

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (2010) Functional characterization of a UDP-glucose: flavonoid 3-O-glucosyltransferase from the seed coat of black soybean (Glycine max (L.) Merr.). Phytochemistry 71:1253–1263

    Article  CAS  Google Scholar 

  • Kovinich N, Saleem A, Arnason JT, Miki B (2011) Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genom 12:381

    Article  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paints flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Moreau C, Ambrose MJ, Turner L, Hill L, Ellis TH, Hofer JM (2012) The b gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color. Plant Physiol 159:759–768

    Article  CAS  Google Scholar 

  • Nagai I (1926) On the genetics of soybean (Japanese). Agric Hortic 1(1–14):107–108

    Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51:2992–2999

    Article  CAS  Google Scholar 

  • Palmer RG, Groose RW (1993) A new allele at the w4m locus derived from the w4-m mutable allele in soybean. J Hered 84:217–300

    Google Scholar 

  • Palmer RG, Hedges BR, Benavente RS, Groose RW (1989) w4-mutable line in soybean. Dev Genet 10:542–551

    Article  Google Scholar 

  • Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative genetics. In: Specht JE, Boerma HR (eds) Soybean: improvement, production, and uses. Agronomy monograph 16, 3rd edn. American Society of Agronomy, Madison Inc., Madison, pp 137–234

    Google Scholar 

  • Park GT, Sundaramoorthy J, Park JB, Lee JD, Choi KS, Kim JH, Seo HS, Park SK, Song JT (2014) Diversity of the W1 gene encoding flavonoid 3′,5′-hydroxylase in white- and purple-flowered soybeans. Plant Genet Resour. doi:10.1017/S1479262114000938

    Google Scholar 

  • Schwinn KE, Davies KM (2004) Flavonoids. In: Davies KM (ed) Plant pigment and their manipulation. Annual plant reviews, vol 14. Blackwell Publishing, Oxford, pp 92–149

    Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  CAS  Google Scholar 

  • Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20:288–303

    Article  CAS  Google Scholar 

  • Stephens PA, Nickell CD (1992) Inheritance of pink flower in soybean. Crop Sci 32:1131–1132

    Article  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  Google Scholar 

  • Takahashi Y, Fukuyama J (1919) Morphological and genetic studies on the soybean (Japanese). Hokkaido Agriculture Experiment Station Report 10

  • Takahashi R, Githiri SM, Hatayama K, Dubouzet EG, Shimada N, Aoki T, Ayabe S, Iwashina T, Toda K, Matsumura H (2007) A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Mol Biol 63:125–135

    Article  CAS  Google Scholar 

  • Takahashi R, Matsumura H, Oyoo ME, Khan NA (2008) Genetic and linkage analysis of purple-blue flower in soybean. J Hered 99:593–597

    Article  CAS  Google Scholar 

  • Takahashi R, Dubouzet JG, Matsumura H, Yasuda K, Iwashina T (2010) A new allele of flower color gene W1 encoding flavonoid 3′5′-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biol 10:155

    Article  Google Scholar 

  • Takahashi R, Benitez ER, Oyoo ME, Khan NA, Komatsu S (2011) Nonsense mutation of an MYB transcription factor is associated with purple-blue flower color in soybean. J Hered 102:458–463

    Article  CAS  Google Scholar 

  • Takahashi R, Morita Y, Nakayama M, Kanazawa A, Abe J (2012) An active CACTA-family transposable element is responsible for flower variegation in wild soybean Glycine soja. Plant Genome 5:62–70

    Article  CAS  Google Scholar 

  • Takahashi R, Yamagishi N, Yoshikawa N (2013) A MYB transcription factor controls flower color in soybean. J Hered 104:149–153

    Article  CAS  Google Scholar 

  • Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philos Trans R Soc B 368:20120432

    Article  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tissue Organ Cult 80:1–24

    Article  CAS  Google Scholar 

  • To KY, Wang CK (2006) Molecular breeding of flower color. In: da Silva JAT (ed) Floriculture, ornamental, and plant biotechnology: advances and topical issues, vol 1. Global Science Books, Middlesex, pp 300–310

    Google Scholar 

  • Toda K, Yang D, Yamanaka N, Watanabes S, Harada K, Takahashi R (2002) A single-base deletion in soybean flavonoid 3′-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol 50:187–196

    Article  CAS  Google Scholar 

  • Todd JJ, Vodkin LO (1993) Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol 102:663–670

    CAS  Google Scholar 

  • Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835

    Article  CAS  Google Scholar 

  • Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 21:3063–3077

    Article  CAS  Google Scholar 

  • Wang CS, Todd JJ, Vodkin LO (1994) Chalcone synthase mRNA and activity are reduced in yellow seed coats with dominant I alleles. Plant Physiol 105:739–748

    Article  CAS  Google Scholar 

  • Wang CK, Chen PY, Wang HM, To KY (2006) Cosuppression of tobacco chalcone synthase using petunia chalcone synthase construct results in white flowers. Bot Stud 47:71–82

    CAS  Google Scholar 

  • Woodworth CM (1923) Inheritance of growth habit, pod color and flower color in soybeans. J Am Soc Agron 15:481–495

    Article  Google Scholar 

  • Xu M, Palmer RG (2005) Genetic analysis and molecular mapping of a pale flower allele at the W4 locus in soybean (Glycine max (L.) Merr.). Genome 48:334–340

    Article  CAS  Google Scholar 

  • Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK (2010) Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean (Glycine max (L.) Merr.). Genetics 184:53–63

    Article  CAS  Google Scholar 

  • Yan F, Di S, Rodas FR, Torrico TR, Murai Y, Iwashina T, Anai T, Takahashi R (2014) Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC Plant Biol 14:58

    Article  Google Scholar 

  • Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC (2010) Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered 101:757–768

    Article  CAS  Google Scholar 

  • Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  CAS  Google Scholar 

  • Zabala G, Vodkin LO (2003) Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3′ hydroxylase. Genetics 163:295–309

    CAS  Google Scholar 

  • Zabala G, Vodkin LO (2005) The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17:2619–2632

    Article  CAS  Google Scholar 

  • Zabala G, Vodkin LO (2007a) A rearrangement resulting in small tandem repeats in the F3′5′H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci 47:113–124

    Article  Google Scholar 

  • Zabala G, Vodkin LO (2007b) Novel exon combinations generated by alternative splicing of gene fragments mobilized by a CACTA transposon in Glycine max. BMC Plant Biol 7:38

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the ‘Next-Generation BioGreen21 Program for Agriculture & Technology Development’ (Project No. PJ01109202), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Tae Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaramoorthy, J., Park, G.T., Lee, JD. et al. Genetic and molecular regulation of flower pigmentation in soybean. J Korean Soc Appl Biol Chem 58, 555–562 (2015). https://doi.org/10.1007/s13765-015-0077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-015-0077-z

Keywords