Advertisement

Real-time imaging of glioblastoma using bioluminescence in a U-87 MG xenograft model mouse

  • Woong Kim
  • Bo Ram Kang
  • Hye Yun Kim
  • Soo Min Cho
  • Yong-Deok Lee
  • Sehoon Kim
  • Jung Young Kim
  • Dong Jin Kim
  • YoungSoo Kim
Article

Abstract

Glioblastoma multiforme (GBM), the most common malignant brain tumor, is characterized by aggressive proliferation and invasive potential. Xenograft animal models of GBM have critically contributed to evaluation of novel therapeutic agents, drug delivery system, and diagnostic tools. To mimic intrinsic behavior of GBM, orthotopic transplantation of cancer cells and continuous observation of cell growth should be conducted in animal study. Here, we generated xenograft model mouse of GBM in which U-87 MG human glioblastoma cells were intracranially implanted for live imaging. Introducing luciferase gene into U-87 MG cell line enabled real-time observation and quantification of tumor survival and propagation by detecting photon emission derived from luciferase. Our GBM model mouse has potentials to bring great advantages in pharmacological and mechanistic investigation on brain tumors.

Keywords

Bioluminescence imaging Glioblastoma U-87 MG Xenograft 

Notes

Acknowledgments

This work was supported by KIST Institutional Programs (2V03110).

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25CrossRefGoogle Scholar
  2. Agarwal S, Manchanda P, Vogelbaum MA, Ohlfest JR, Elmquist WF (2013) Function of the blood–brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos 41:33–39CrossRefGoogle Scholar
  3. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260CrossRefGoogle Scholar
  4. Curt GA (1994) The use of animal models in cancer drug discovery and development. Stem Cells 12:23–29CrossRefGoogle Scholar
  5. Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, Berger MS, James CD (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 107:610–616Google Scholar
  6. Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 13:209–222CrossRefGoogle Scholar
  7. Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7:5–15Google Scholar
  8. Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909Google Scholar
  9. Hashizume R, Ozawa T, Dinca EB, Banerjee A, Prados MD, James CD, Gupta N (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J Neurooncol 96:151–159Google Scholar
  10. Henriquez NV, van Overveld PG, Que I, Buijs JT, Bachelier R, Kaijzel EL, Lowik CW, Clezardin P, van der Pluijim G (2007) Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24:699–705Google Scholar
  11. Jarzabek MA, Huszthy PC, Skaftnesmo KO, McCormack E, Dicker P, Prehn JH, Bjerkvig R, Byrne AT (2013) In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme. Mol Imaging 12:161–172Google Scholar
  12. Jost SC, Collins L, Travers S, Piwnica-Worms D, Garbow JR (2009) Measuring brain tumor growth: combined bioluminescence imaging-magnetic resonance imaging strategy. Mol Imaging 8:245–253Google Scholar
  13. Kaye AH, Morstyn G, Gardner I, Pyke K (1986) Development of a xenograft glioma model in mouse brain. Cancer Res 46:1367–1373Google Scholar
  14. Killion JJ, Radinsky R, Fidler IJ (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17:279–284CrossRefGoogle Scholar
  15. Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, van Noorden CJ, van Tellingen O (2007) Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43(7–13):30Google Scholar
  16. Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chenevert TL, Ross BD, Rehemtulla A (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99:16551–16555Google Scholar
  17. Lohmann C, Huwel S, Galla HJ (2002) Predicting blood–brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10:263–276CrossRefGoogle Scholar
  18. Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250CrossRefGoogle Scholar
  19. O’Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT (2010) Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 220:317–327Google Scholar
  20. Ozawa T, James CD (2010) Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp. doi: 10.3791/1986 Google Scholar
  21. Perry J, Laperriere N, Zuraw L, Chambers A, Spithoff K, Cairncross JG (2007) Adjuvant chemotherapy for adults with malignant glioma: a systematic review. Can J Neurol Sci 34:402–410CrossRefGoogle Scholar
  22. Radhakrishnan K, Mokri B, Parisi JE, O’Fallon WM, Sunku J, Kurland LT (1995) The trends in incidence of primary brain tumors in the population of Rochester, Minnesota. Ann Neurol 37:67–73CrossRefGoogle Scholar
  23. Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495Google Scholar
  24. Tsao MN, Lloyd NS, Wong RK, Rakovitch E, Chow E, Laperriere N (2005) Radiotherapeutic management of brain metastases: a systematic review and meta-analysis. Cancer Treat Rev 31:256–273CrossRefGoogle Scholar
  25. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr, Owens G, Ransohoff J 2nd, Robertson JT, Shapiro WR, Smith KR Jr, Wilson CB, Strike TA (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329Google Scholar
  26. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589CrossRefGoogle Scholar
  27. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Löwik CW, Gautschi E, Thalmann GN, Cecchini MG (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160:1143–1153Google Scholar

Copyright information

© The Korean Society for Applied Biological Chemistry 2015

Authors and Affiliations

  • Woong Kim
    • 1
    • 2
  • Bo Ram Kang
    • 1
    • 2
  • Hye Yun Kim
    • 1
    • 2
  • Soo Min Cho
    • 1
    • 2
  • Yong-Deok Lee
    • 3
  • Sehoon Kim
    • 3
  • Jung Young Kim
    • 4
  • Dong Jin Kim
    • 1
    • 2
  • YoungSoo Kim
    • 1
    • 2
  1. 1.Center for Neuro-Medicine, Brain Science InstituteKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.Biological Chemistry ProgramKorea University of Science and TechnologyDaejeonRepublic of Korea
  3. 3.Center for Theragnosis, Biomedical Research InstituteKorea Institute of Science and TechnologySeoulRepublic of Korea
  4. 4.Molecular Imaging Research CenterKorea Institute of Radiological & Medical SciencesSeoulRepublic of Korea

Personalised recommendations