Skip to main content

Fate, occurrence, and toxicity of veterinary antibiotics in environment

Abstract

The increasing worldwide usages of Veterinary Antibiotics (VAs) for therapeutic and nontherapeutic are becoming serious issue due to its adverse effects on all living organisms. Release of VAs into the aquatic and terrestrial environments results in antibiotic resistance in bacteria and toxicity to humans, animals, and plants. This review covers the present scenario on VA usage, occurrence, toxicity, and removal techniques.

This is a preview of subscription content, access via your institution.

References

  • Asai T, Harada K, Ishihara K, Kojima A, Sameshima T, Tamura Y et al. (2007) Association of antimicrobial resistance in campylobacter isolated from food-producing animals with antimicrobial use on farms. Jpn J Infect Dis 60, 2904.

    Google Scholar 

  • Awad YM, Lee SS, Kim SC, Yang JE, and Ok YS (2010) Novel approaches to monitoring and remediation of veterinary antibiotics in soil and water. Korean J Environ Agric 29, 315–327.

    Article  Google Scholar 

  • Baguer AJ, Jensen J, and Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40, 751–757.

    Article  CAS  Google Scholar 

  • Batchelder AR (1981) Chlortetracycline and oxytetracycline effects on plant growth and development in liquid culture. J Environ Qual 10, 515–518.

    Article  CAS  Google Scholar 

  • Batchelder AR (1982) Chlorotetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11, 675–678.

    Article  CAS  Google Scholar 

  • Ben W, Qiang Z, Pan X, and Chen M (2009) Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton’s reagent. Water Res 43, 4392–4402.

    Article  CAS  Google Scholar 

  • Ben Z, Qiang PE, and Nie Y (2012) Degradation of veterinary antibiotics by ozone in swine wastewater pretreated with sequencing batch reactor. J Environ Eng 138, 272–277.

    Article  CAS  Google Scholar 

  • Benbrook CM (2002) Antibiotic drug use in U.S. aquaculture. Institute for Agriculture and Trade Policy, Washington, USA.

    Google Scholar 

  • Boreen AL, Arnold XA, and McNeill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environ Sci Technol 38, 3933–3940.

    Article  CAS  Google Scholar 

  • Boreen AL, Arnold WA, and McNeill K (2005) Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2 extrusion photoproduct. Environ Sci Technol 39, 3630–3638.

    Article  CAS  Google Scholar 

  • Boxall ABA, Blackwell PA, Cavallo R, Kay P, and Tolls J (2002) The sorption and transport of a sulphonamide antibiotics in soil systems. Toxicol Lette 131, 19–28.

    Article  CAS  Google Scholar 

  • Burhenne J, Ludwig M, Nikoloudis P, and Spiteller M (1997) Photolytic de-gradation of fluoroquinolone carboxylic acids in aqueous solution. 1. Primary photoproducts and half-lives. Environ Sci Pollut Res 4, 10–15.

    Article  CAS  Google Scholar 

  • Calisto V and Esteves VI (2009) Psychiatric pharmaceuticals in the environment. Chemosphere 77, 1257–1274.

    Article  CAS  Google Scholar 

  • Chung BY, Lee SG, and Cho JY (2009) Advanced oxidation process of veterinary antibiotic tetracycline by electron beam irradiation. J Korean Soc Appl Biol Chem 52, 675–680

    Article  CAS  Google Scholar 

  • Cunningham V (2008) Special characteristics of pharmaceuticals related to environmental fate. In Phramceuticals in the Environment. Sources, Fate, Effects and Risk (3rd ed.), Kümmerer K (ed.), pp. 23–24, Springer, Berlinn Heidelberg, Germany.

    Google Scholar 

  • Díaz-Cruz MS, de Alda MJL, and Barceló D (2006) Determination of antimicrobials in sludge from infiltration basins at two artificial recharge plants by pressurized liquid extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr A 1130, 72–82.

    Article  Google Scholar 

  • Díaz-Cruz MS, López de Alda MJ, and Barceló D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trend Anal Chem 22, 340–351.

    Article  Google Scholar 

  • Doi AM and Stoskopf MK (2000) The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter. J Aquat Anim Health 12, 246–253.

    Article  Google Scholar 

  • EMA (European Medicines Agency) (2011) Trends in the sales of veterinary antimicrobial agents in nine European countries (2005–2009). (EMA/238630/2011), UK.

  • García-Galán MJ, Rodríguez-Rodríguez CE, Vicent T, Caminal G, Díaz-Cruz MS, and Barceló D (2011) Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MS. Sci Total Environ 409, 5505–5512.

    Article  Google Scholar 

  • Göbel A, Thomsen A, McArdell CS, Alder AC, Giger W, Theib et al. (2005) Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J Chromatogr A 1085, 179–189.

    Article  Google Scholar 

  • Golet EM, Xifra I, Siegrist H, Alder AC, and Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37, 3243–3249.

    Article  CAS  Google Scholar 

  • Haller MY, Müller SR, McArdell CS, Alder AC, and Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatog A 952, 111–120.

    Article  CAS  Google Scholar 

  • Halling-Sørenson B, Sengelov G, and Tjornelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline resistant bacteria. Arch Environ Contam Toxicol 42, 236–271.

    Article  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Ingerslev F, and Jensen LB (2003) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44, 7–16.

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, and Nau H (2002) Determination of persistent tetracycline residues in soil fertilised with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74, 1509–1518.

    Article  CAS  Google Scholar 

  • Hertenberger G, Zampach P, and Bachmann G (2002) Plant species affect the concentration of free sugars and free amino acids in different types of soil. J Plant Nut Soil Sci 165, 557–565.

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere erfarungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundung und brache. Arbeiten der Deutsche Landwirtschafts-Gesellschaft 98, 59–78.

    Google Scholar 

  • Hoa PTP, Managaki S, Nakada N, Takada H, Shimizu A, Anh DH et al. (2011) Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Sci Total Environ 409, 2894–2901.

    Article  CAS  Google Scholar 

  • Holzel CS, Schwaiger K, Harms K, Kuchenhoff H, Kunz A, Meyer K et al. (2010) Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria. Environ Res 110, 318–326.

    Article  Google Scholar 

  • Hu XG, Luo Y, Zhou QX, and Xu L (2008) Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chin J Anal Chem 36, 1162–1166.

    Article  CAS  Google Scholar 

  • Ikehata K, Naghashkar NJ, and EI-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci Eng 28, 353–414.

    Article  CAS  Google Scholar 

  • Jacobsen AM and Halling-Sørensen B (2006) Multi-component analysis of tetracyclines, sulfonamides and tylosin in swine manure by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 384, 1164–1174.

    Article  CAS  Google Scholar 

  • JETACAR (Joint Expert Advisory Committee on Antibiotic Resistance) (1999) The use of antibiotics in food-producing animals: antibiotic resistance bacteria in animals and humans. Commonwealth Department of health and aged care. Common wealth Department of Agriculture, Fisheries and Forestry, Australia. ISBN 1 86496 0612.

  • Jian-hua Y, De-kui N, Zhao-jun L, Yong-chao L, and Shu-qing Z (2010) Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. Scientia Agricultura Sinica 43, 721–728 (in Chinese)

    Google Scholar 

  • Jjemba PK (2002a) The effect of chloroquine, quinacrine, and metronidazole on both soybean plants and soil microbiota. Chemosphere 46, 1019–1025.

    Article  CAS  Google Scholar 

  • Jjemba PK (2002b) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93, 267–278.

    Article  Google Scholar 

  • Jørgensen SE and Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40, 691–699.

    Article  Google Scholar 

  • Kallenborn R, Fick J, Lindberg R, Moe M, Nielsen KM, Tysklind M et al. (2008) Pharmaceutical residues in Northern European environments: consequences and perspectives. In Pharmaceuticals in the Environment. Sources, Fate, Effects and Risk (3rd ed.), Kümmerer K (ed.), pp. 61–74, Springer, Berlin Heidelberg, Germany.

    Google Scholar 

  • Karcı A and BalcıoÄŸlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407, 4652–4664.

    Article  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8, 1–13.

    Article  CAS  Google Scholar 

  • Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS (2011) Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Poll 214, 1–4.

    Article  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment. Chemosphere 75, 417–434.

    Article  Google Scholar 

  • Kümmerer K and Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Infec 9, 1203–1214.

    Article  Google Scholar 

  • Larcher S and Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91, 211–218.

    Article  CAS  Google Scholar 

  • Liu F, Ying GG, Tao R, Zhao JL, Yang JF, and Zhao LF (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157, 1636–1642.

    Article  CAS  Google Scholar 

  • Liu XC, Dong YH, and Wang H (2007) Residual tetracyclines in manure from concentrated animal feeding operations in Jiangsu Province. J Agro-Environ Sci 27, 1177–1182 (in Chinese).

    Google Scholar 

  • Loftin KA, Adams CD, Meyer MT, and Surampalli R (2008) Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J Environ Qual 37, 378–386.

    Article  CAS  Google Scholar 

  • Lunestad BT, Tore B, Samuelsen OB, Fjelde S, and Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134, 217–225.

    Article  CAS  Google Scholar 

  • Mark C, Christian F, Enric M, Paul MM, and Ian P (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Anti Chemo 52, 159–161

    Article  Google Scholar 

  • Martínez-Carballo E, González-Barreiro C, Scharf S, and Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148, 570–579.

    Article  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157, 2893–2902.

    Article  CAS  Google Scholar 

  • Migliore L, Brambilla G, Cozzolino S, and Gaudio L (1995) Effects on plants of sulphadimethoxine used in intensive farming (Panicum milieceum, Pisum sativum and Zea mays). Agric Ecosyst Environ 52, 103–110.

    Article  CAS  Google Scholar 

  • Migliore L, Civitareale C, Brambilla G, Cozzolino S, Casoria P, and Gaudio L (1997) Effect of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L., and Rumex acetosella L.). Agric Ecosyst Environ 65, 163–168.

    Article  CAS  Google Scholar 

  • Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, and Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37, 2957–2961.

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, and Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52, 1233–1244.

    Article  CAS  Google Scholar 

  • Miller GC and Donaldson SG (1994) Factors affecting photolysis of organic compounds on soils. In Aquatic and Surface Photochemistry (6). Helz GR, Zepp RG, and Currier RW (eds.), pp. 97–109, Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  • Mitema ES, Kikuvi GM, Wegener HC, and Stohr K (2001) An assessment of antimicrobial consumption in food producing animals in Kenya. J Vet Pharmacol Therap 24, 385–390.

    Article  CAS  Google Scholar 

  • NAAS (National Academy of Agricultural sciences) (2010) Antibiotics in manure and soil-A grave threat to human and animal health. Policy paper no 43, pp. 20, New Delhi, India.

  • Ok YS, Kim SC, Kim KR, Lee SS, Moon DH, Lim KJ et al. (2011) Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 174, 1–4.

    Article  Google Scholar 

  • Oka H, Ikai Y, Kawamura N, Yamada M, Harada K, Ito M et al. (1989) Photodecomposition products of tetracyclines in aqueous solution. J Agric Food Chem 37, 226–231.

    Article  CAS  Google Scholar 

  • Pan X, Qiang Z, Ben W, and Chen C (2011) Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 84, 695–700.

    Article  CAS  Google Scholar 

  • Pouliquen H, Delepee R, Larhantec-Verdier M, Morvan M-L, and Bris HL (2007) Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline, oxolinic acid, flumequine and florfenicol) in deionised water, freshwater and seawater under abiotic conditions. Aquaculture 262, 23–28.

    Article  CAS  Google Scholar 

  • Prado N, Ochoa J, and Amrane A (2009) Biodegradation and biosorption of tetracycline and tylosin antibiotics inactivated sludge system. Proc Biochem 44, 1302–1306.

    Article  CAS  Google Scholar 

  • Qingxiang Y, Jing Z, Kongfang K, and Hao Z (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci 21, 954–959.

    Article  Google Scholar 

  • Renee J (2011) Potential trade implications of restrictions on antimicrobial use in animal production. p. 118. Congressional Research Service (CRS) Report for congress prepared for members and committees of congress. Congressional Research Service, USA.

  • Rodarte-Morales AI, Moreira MT, Feijoo G, and Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27, 1839–1846.

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, and Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725–759.

    Article  CAS  Google Scholar 

  • Seo YH, Choi JK, Kim SK, Min HK, and Jung YS (2007) Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment. Korean J Soil Sci Fertil 40, 43–50.

    CAS  Google Scholar 

  • Shi YJ, Wang XH, Qi Z, Diao MH, Gao MM, Xing SF et al. (2011) Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules. J Hazard Mater 191, 103–109.

    Article  CAS  Google Scholar 

  • Sim WJ, Lee JW, Lee ES, Shin SK, Hwang SR, and Oh JE (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82, 179–186.

    Article  CAS  Google Scholar 

  • Tao R, Ying GG, Su HC, Zhou HW, and Sidhu JPS (2010) Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. Environ Pollut 158, 2101–2109.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils. J Plant Nutr Soil Sci 166, 145–167.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S and Peters D (2007) Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforschung Völkenrode 57, 13–23.

    CAS  Google Scholar 

  • Watts CD, Crathorne B, Fielding M, and Killops SD (1982) Nonvolatile organic compounds in treated waters. Environ Health Persp 46, 87–89.

    Article  CAS  Google Scholar 

  • Wei RC, Wang R, Li W, Chen M, and Zheng Q (2008) Determination method of chlortetracycline residues in pig faeces. Acta Agricult Zhejiang 20, 291–295 (in Chinese).

    Google Scholar 

  • Werner JJ, Arnold WA, and McNeill K (2006) Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. Environ Sci Technol 40, 7236–7241.

    Article  CAS  Google Scholar 

  • Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemotherp 49, 585–586.

    Article  CAS  Google Scholar 

  • Wolters A and Steffens N (2005) Photodegradation of antibiotics on soil surfaces: Laboratory studies on sulfadiazine in an ozone-controlled environment. Environ Sci Technol 39, 6071–6078.

    Article  CAS  Google Scholar 

  • Xuan R, Arisi L, Qiquan W, Scott RY, and Biswas K (2010) Hydrolysis and photolysis of oxytetracycline in aqueous solution. J Environ Sci Health Part B 45, 73–81.

    Article  CAS  Google Scholar 

  • Yang CH and Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66, 345–351.

    Article  CAS  Google Scholar 

  • Yang SF, Lin CF, Lin AY, and Hong PK (2011) Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. Water Res 45, 3389–3397.

    Article  CAS  Google Scholar 

  • Zhang HM, Zhang MK, and Gu GP (2008) Residues of tetracyclines in livestock and poultry manures and agricultural soils from north Zhejiang province. J Ecol Rural Environ 24, 69–73 (in Chinese).

    Google Scholar 

  • Zhang SQ, Zhang FD, Liu XM, Wang YJ, Zou SW, and He XS (2005) Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots. Plant Nutr Fert Sci 11, 822–829 (in Chinese).

    Google Scholar 

  • Zhao L, Dong YH, and Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Tot Environ 408, 1069–1075.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Cho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, R.R., Lee, J.T. & Cho, J.Y. Fate, occurrence, and toxicity of veterinary antibiotics in environment. J Korean Soc Appl Biol Chem 55, 701–709 (2012). https://doi.org/10.1007/s13765-012-2220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-012-2220-4

Keywords