Skip to main content
Log in

Flavonoid glycosides from the fruit of Rhus parviflora and inhibition of cyclin dependent kinases by hyperin

  • Short Communication
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Chrysoeriol-7-O-β-d-glucopyranoside (1), luteolin-7-O-β-d-glucopyranoside (2), quercetin-3-O-β-d-glucopyranoside (3), quercetin-3-O-β-d-galactopyranoside (4), and quercetin-3-O-α-l-rhamnopyranoside (5) were isolated for the first time from the fruits of Rhus parviflora. The chemical structures of the compounds were determined using nuclear magnetic resonance, fast atom bombardment mass spectrometry, and infrared spectroscopy. Compound 4 (hyperin) inhibited cyclin dependent kinases (CDK2 and CDK5) in vitro with IC50 values of 21.02 and 10.28 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bajracharya D (1980) Nutritive value of Nepalese edible wild fruits. Zeitschrift für Lebensmitteluntersuchung und-Forschung 171, 363–366.

    Article  CAS  Google Scholar 

  • Bei W, Zang L, Guo J, Peng W, Xu A, Good DA et al. (2009) Neuroprotective effects of a standardized flavonoid extract from Diospyros kaki leaves. J Ethnopharmacol 126, 134–142.

    Article  CAS  Google Scholar 

  • Boersma MG, van der Woude H, Bogaards J, Boeren S, Vervoort J, Cnubben NHP et al. (2002) Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucoronosyl transferases. Chem Res Toxicol 15, 662–679

    Article  CAS  Google Scholar 

  • Camins A, Verdaguer E, Folch J, Canudas AM, and Pallas M (2006) The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect 19, 453–469

    Article  CAS  Google Scholar 

  • Chen ZW and Ma CG (1999) Effects of hyperin on free intracellular Ca2+ in dissociated neonatal rat brain cells. Acta Pharmacol Sin 20, 27–39

    CAS  Google Scholar 

  • Cui EJ, Song NY, Shrestha S, Chung IS, Kim JY, Jeong TS et al. (2012) Flavonoid glycosides from cowpea seeds (Vigna sinensis K.) inhibit LDL Oxidation. Food Sci Biotechnol 21, 619–624.

    Article  CAS  Google Scholar 

  • de Azevedo F, Gaspar RT, Canduri F, Famera JC, and Silveira NJFD (2002) Molecular model of cyclin-dependent kinase 5 complexed with roscovitine. Biochem Bioph Res Commun 287, 1154–1158.

    Article  Google Scholar 

  • Gillardon F, Schrattenholz A, and Sommer B (2005) Investigating the neuroprotective mechanism of action of a CDK5 inhibitor by phosphoproteome analysis. J Cell Biochem 95, 817–826.

    Article  CAS  Google Scholar 

  • Government of India (2006) The Ayurvedic Pharmacopoeia of India, Part I, Vol V, Department of Ayush, Government of India (GOI), India.

    Google Scholar 

  • Gupta R, Singh M, and Sharma A (2003) Neuroprotective effect of antioxidants on ischemia and reperfusion-induced cerebral injury. Pharmacol Res 48, 209–215.

    Article  CAS  Google Scholar 

  • Jeon YJ, Lee HS, Yeon SW, Ko JH, An KM, Yu SW et al. (2005) Inhibitory effects of dehydrocostuslactone isolated from Saussureae radix on CDK2 activity. Korean J Pharmacogn 36, 97–101.

    CAS  Google Scholar 

  • Juergenliemak G, Borje K, Huewel S, Lohmann C, Galla H, and Nahrstedt A (2003) In vitro studies indicate that miquelianin (quercetin 3-O-β-d-glucuronopyranoside) is able to reach the CNS from the small intestine. Planta Medica 69, 1013–1017.

    Article  Google Scholar 

  • Jung SJ, Kim DH, Hong YH, Lee JH, Song HN, Rho YD et al. (2007) Flavonoids from the flower of Rhododendron yedoense var. Poukhanense and their antioxidant activities. Arch Pharm Res 30, 146–159

    Article  CAS  Google Scholar 

  • Kattaeve SN and Nikonov GK (1973) The structure of thermopsoside — a new flavonoid from Thermopsis alterniflora. Chem Nat Prod 1, 115–116.

    Google Scholar 

  • Knowckaert M, Greengard P, and Meijer L (2002) Pharmacological inhibitors of clyclin-dependent kinases. Trends Pharmacol Sci 23, 417–425.

    Article  Google Scholar 

  • Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM et al. (2000) Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclin-dependent kinase 5/p25. Eur J Biochem 27, 5983–5994.

    Article  Google Scholar 

  • Losiewicz MD, Carlson BA, Kaur G, Sausville EA, and Worland PJ (1994) Potent inhibition of CDC2 kinase activity by the flavonoid L86-8275. Biochem Cell Biol 201, 589–595.

    CAS  Google Scholar 

  • Ma CJ, Jung WJ, Lee KY, Kim YC, and Sung SH (2009) Calpain inhibitory flavonoids isolated from Orostachys japonicas. J Enzym Inhib Med Ch 24, 676–679.

    Article  CAS  Google Scholar 

  • Manandhar NP (1995) A survey of medicinal plants of Jajarkot district, Nepal. J Ethnopharmacol 48, 1–6.

    Article  CAS  Google Scholar 

  • Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N et al. (1997) Biochemical and cellular effects of roscovitine, apotent and selective inhibitor of the cyclin-dependent kinases CDC2, CDK2 and CDK5. Eur J Biochem 243, 527–536.

    Article  CAS  Google Scholar 

  • Nguyen MD, Boudreau M, Kriz J, Couillard-Despres S, Kaplan DR, and Julien JP (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23, 2131–2149

    CAS  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, and Tsai L (1999) Conversion of p35 to p25 deregualtes CDK5 activity and promotes neurodegeneration. Nature 402, 615–622.

    Article  CAS  Google Scholar 

  • Press JR, Shrestha KK, and Sutton DA (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum, London and Central Department of Botany, India.

    Google Scholar 

  • Price BD, Hughes-Davies L, and Park SJ (1995) CDK2 kinase phosphorylates serine 315 of human p53 in vitro. Oncogene 11, 73–89

    CAS  Google Scholar 

  • Shrestha S, Park JH, Lee DY, Cho JG, Cho S, Yang HJ et al. (2012) Rhus parviflora and its biflavonoid constituent, rhusflavone, induce sleep through the positive allosteric modulation of GABAA-benzodiazepine receptors. J Ethnopharmacol 142, 213–229

    Article  CAS  Google Scholar 

  • Talapatra B, Bhaumik A, and Talapatra SK (1993) 2-Hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester, a new natural product from Rhus parviflora: a simple achiral molecule having both enantiotopic and diastereotopic hydrogens. Indian J Chem 32B, 1292–1294.

    CAS  Google Scholar 

  • Talapatra SK, Mandal SK, Bhaumik A, Mukhopadhyay S, Kar P, Patra A et al. (2001) Echinulin, a novel cyclic dipeptide carrying a triprenylated indole moiety from an anacardiaceae, a cucurbitaceae and two orchidaceae plants: detailed high resolution 2D-NMR and mass spectral studies. J Indian Chem Soc 78, 773–777.

    CAS  Google Scholar 

  • Tianlu M and Brach AR (2008) Anacardiaceae. In Flora of China 11, 335–348. Science Press, Beijing, China.

    Google Scholar 

  • Weishaupt JH, Kussmaul L, Grotsch P, Heckel A, Rohde G, Romig H et al. (2003) Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24, 489–502.

    Article  CAS  Google Scholar 

  • Zhang Z, Zhao R, Tang Y, Wen S, Wang D, and Qi J (2011) Fuzhisan, a Chinese herbal medicine, inhibits â-amyloid-induced neurotoxicity and tphosphorylation through calpain/CDK5 pathway in cultured cortical neurons. Neurochem Res 36, 801–811.

    Article  CAS  Google Scholar 

  • Zhou X and Chen Z (2010) Action mechanism of hyperin on neonatal rat’s neuron with anoxia-reoxygenation. Chin Pharmacol Bull 26, 83–86.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-In Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, S., Lee, DY., Park, JH. et al. Flavonoid glycosides from the fruit of Rhus parviflora and inhibition of cyclin dependent kinases by hyperin. J Korean Soc Appl Biol Chem 55, 689–693 (2012). https://doi.org/10.1007/s13765-012-2133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-012-2133-2

Keywords

Navigation