Skip to main content
Log in

OsPrMC3 is involved in seed development and in determining seed yield as a branching inhibitor

  • Short Communication
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

We here show that OsPrMC3 affects seed yields by regulating tillering. OsPrMC3 is highly expressed in leaves and mature seeds, although its expression is detected in all tissues, and its mutant osprmc3 has more tillers and less grain, indicating its crucial role in determining grain yield as a tillering inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M et al. (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51, 1019–1029.

    Article  CAS  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S et al. (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50, 1416–1424.

    Article  CAS  Google Scholar 

  • Clouse SD and Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49, 427–451.

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, and Hubbard L (1997) The evolution of apical dominance in maize. Nature 386, 485–488.

    Article  CAS  Google Scholar 

  • Fujioka S and Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54, 137–164.

    Article  CAS  Google Scholar 

  • Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G et al. (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71, 265–276.

    Article  CAS  Google Scholar 

  • Hubbard L, McSteen P, Doebley J, and Hake S (2002) Expression patterns and mutant phenotype of teosintebranched 1 correlate with growth suppression in maize and teosinte. Genetics 162, 1927–1935.

    CAS  Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, and Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46, 79–86.

    Article  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanka M, Sentoku N, Kitano H, and Matsuoka M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98, 8909–8914.

    Article  CAS  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D et al. (2003) Control of tillering in rice. Nature 422, 618–621.

    Article  CAS  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z et al. (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21, 1512–1525.

    Article  CAS  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L et al. (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230, 649–658.

    Article  CAS  Google Scholar 

  • Lukens L and Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18, 627–638.

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39, 23–52.

    Article  CAS  Google Scholar 

  • Marshall SD, Putterill JJ, Plummer KM, and Newcomb RD (2003) The carboxylesterase gene family from Arabidopsis thaliana. J Mol Evol 57, 487–500.

    Article  CAS  Google Scholar 

  • Murase K, Hirano Y, Sun TP, and Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellins receptor GID1. Nature 456, 459–463.

    Article  CAS  Google Scholar 

  • Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M et al. (2006) Identification and characterization of Arabidopsis gibberellins receptors. Plant J 46, 880–889.

    Article  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K et al. (2004) An overview of gibberellins metabolism enzyme genes and their related mutants in rice. Plant Physiol 134, 1642–1653.

    Article  CAS  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M et al. (2003) Accumulation of phosphorylated repressor for gibberellins signaling in an F-box mutant. Science 299, 1896–1898.

    Article  CAS  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M et al. (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33, 513–520.

    Article  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M et al. (2005) GIBBERELLIN INSENSTIVE DWARF1 encodes a soluble receptor for gibberellins. Nature 437, 693–698.

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al. (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200.

    Article  CAS  Google Scholar 

  • Vandenbussche F, Fierro A, Wiedemann G, Reski R, and Staraeten D (2007) Evolutionary conservation of plant gibberellin signaling pathway components. BMC Plant Biol 7, 65.

    Article  Google Scholar 

  • Wang Y and Li J (2011) Branching in rice. Curr Opin Plant Biol 14, 94–99.

    Article  CAS  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W et al. (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48, 687–698.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Soo Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.H., Kim, Y.J., Song, J.T. et al. OsPrMC3 is involved in seed development and in determining seed yield as a branching inhibitor. J Korean Soc Appl Biol Chem 55, 429–432 (2012). https://doi.org/10.1007/s13765-012-2019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-012-2019-3

Keywords

Navigation