Skip to main content
Log in

Phytoremediation potential of duckweed (Lemna minor L.) for hexavalent chromium removal in synthetic wastewater: unveiling physiological response and defense mechanisms against excessive heavy metal uptake

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Heavy metals pose a significant threat as environmental pollutants, known for their high toxicity. Traditional physiochemical methods for their removal are costly and energy-intensive, making bioremediation a promising alternative. This study aims to assess the potential of duckweed (Lemna minor L.) in removing hexavalent Chromium ((Cr (VI)) from wastewater and examines the impact of Cr (VI) toxicity on the plant’s metabolism in aquatic conditions. The experiments were conducted at least three replicates in completely randomized blocks. Various parameters, including Cr concentration (0–100 mg L−1), pH levels (5, 7 and 9), and treatment duration (24–168 h) were investigated to optimize phytoremediation conditions. Physiological and biochemical parameters such as content of photosynthetic pigments, MDA, total phenolics and flavonoid compounds, reducing sugar and polysaccharides, proline and lignin were measured. Additionally, chromium accumulation in plant tissues and residual levels in the culture media were determined using inductively coupled plasma (ICP). After 24 and 168 h, chromium adsorption by L. minor resulted in decreased levels of Cr (VI) in the media. Determination of bioaccumulation factor (BCF) after 168 h indicate higher efficiency of the plant at moderate Cr (VI) concentrations. At higher concentrations of Cr, salinity, EC and TDS increased in the media across all pH condition. The finding revealed exposure to Cr (VI) led to a notable increase in the content of H2O2 (1.2- to 1.7-fold) and MDA (2.2- to 5-fold) in L. minor tissues, particularly evident at pH 9. The contents of total phenolics, flavonoids, lignin and proline (at pH 5 and 7), reducing sugars (at pH 7 and 9) increased; while polysaccharide content was fluctuated. Also, content of photosynthetic pigments decreased by approximately 50% under treatment with 50 and 100 mg L−1 Cr (VI) at pH 5 condition. These responses indicating ROS accumulation as a signal for plant defense mechanism activation. Our results showed that L. minor is tolerant up to 50 mg L−1 Cr (VI), but is susceptible to higher concentrations of this heavy metal. Despite its susceptibility, L. minor proves effective in absorbing Cr (VI) from contaminated waters, highlighting its potential for phytoremediation, albeit requiring careful management for optimal results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data used in this discussion are included in this article. Data will be made available on request.

References

  • Adrees M, Ali S, Iqbal M, Bharwanna SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8

    Article  CAS  Google Scholar 

  • Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Ibrahim M, Gill RA, Khan MD (2015) Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ Sci Pollut Res 22:10601–10609

    Article  CAS  Google Scholar 

  • Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manag 5(3):56–66

    Google Scholar 

  • Ayesha Q, Sumera I, Khajista J, Saba L (2014) Response of maize to hydrogen peroxide priming under chromium stress. Mycopath 12(2):123–127

    Google Scholar 

  • Balal RM, Shahid MA, Vincent C, Zotarelli L, Liu G, Mattson NS, Rathinasabapathi B, Martinez-Nicolas JJ, Garcia-Sanchez F (2017) Kinnow mandarin plants grafted on tetraploid rootstocks are more torerant to Cr-toxicity than those grafted on its diploids one. Environ Exp Bot 140:8–18

    Article  CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoeche N (2013) Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): a question of interest for both vegetables and humans. Agriculture 3:188–209

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beketov EV, Pakhomov VP, Nesterova OV (2005) Improved method of flavonoid extraction from bird cherry fruits. Pharm Chem J 39:316–318. https://doi.org/10.1007/s11094-005-0143-7

    Article  CAS  Google Scholar 

  • Bind A, Goswami L, Prakash V (2018) Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: sorbent preparation, characterization, regeneration and cost estimation. Geol Ecol Landsc 2(2):61–72. https://doi.org/10.1080/24749508.2018.1452460

    Article  Google Scholar 

  • Cabane M, Afif D, Hawkins S (2012) Lignins and abiotic stresses. Adv Bot Res 61:219–262. https://doi.org/10.1016/B978-0-12-416023-1.00007-0

    Article  CAS  Google Scholar 

  • Cheng H, Li L, Xu F, Cheng S, Cao F, Wang Y, Yuan H, Jiang D, Wu C (2013) Expression patterns of a cinnamyl alcohol dehydrogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 40:707–721. https://doi.org/10.1007/s11033-012-2111-0

    Article  CAS  Google Scholar 

  • Devi Chinmayee M, Anu MS, Mahesh B, Mary Sheeba A, Mini I, Swapna TS (2014) A comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas L. IOSR J Environ Sci Bull Food Technol 8(7):58–67. https://doi.org/10.9790/2402-08735867

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Eleftheriou EP, Adamakis ID, Panteris E, Fatsiou M (2015) Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Mol Sci 16(7):15852–15871. https://doi.org/10.3390/ijms160715852

    Article  CAS  Google Scholar 

  • EPA (United States Environmental Protection Agency) (2022) Chromium compounds: drinking water standards. https://www.epa.gov/sdwa/chromium-drinking-water#standard/

  • Guo L, Fang Y, Jin Y, He K, Zhao H (2023) High starch duckweed biomass production and its highly-efficient conversion to bioethanol. Environ Technol Innov 32:103296

    Article  CAS  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174

    CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. 1. Kinetics and stoichiometry of fatty acid peroxidation peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611. https://doi.org/10.1007/s004250050524

    Article  CAS  Google Scholar 

  • Ibrahim MH, Kong YC, Zain NAM (2017) Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung nyawa (Gynura procumbens (Lour.) Merr). Molecules 22(10):1623. https://doi.org/10.3390/molecules22101623

    Article  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  Google Scholar 

  • Islamia JM (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138(5):554–558. https://doi.org/10.1016/S0176-1617(11)80240-3

    Article  Google Scholar 

  • Juarez AB, Barsanti L, Passarelli V, Evangelista V, Vesentini N, Conforti V, Gualtieri P (2008) In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri. J Environ Monit 10(11):1313–1318

    Article  CAS  Google Scholar 

  • Jung C, Heo J, Han J, Her N, Lee SJ, Oh J, Ryu J, Yoon Y (2013) Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol 106:63–71

    Article  CAS  Google Scholar 

  • Khan MA, Wani GA, Majid H, Farooq FU, Reshi ZA, Husaini AM, Shah MA (2020) Differential bioaccumulation of select heavy metals from wastewater by Lemna minor. Bull Environ Contam Toxicol 105:777–783. https://doi.org/10.1007/s00128-020-03016-3

    Article  CAS  Google Scholar 

  • Khater DZ, Amin RS, Fetohi AE, Mahmoud M, El-Khatib KM (2023) Insights on hexavalent chromium (VI) remediation strategies in abiotic and biotic dual chamber microbial fuel cells: electrochemical, physical, and metagenomics characterizations. Sci Rep 13:20184. https://doi.org/10.1038/s41598-023-47450-9

    Article  Google Scholar 

  • Koca N, Karadeniz F, Burdurlu HS (2007) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100(2):609–615. https://doi.org/10.1016/j.foodchem.2005.09.079

    Article  CAS  Google Scholar 

  • Kohli SK, Handa N, Kaur R, Kumar V, Khanna K, Bakshi P, Singh R, Arora S, Kaur R, Bhardwaj R (2017) Role of salicylic acid in heavy metal stress tolerance: insight into underlying mechanism. In: Nazar R, Iqbal N, Khan N (eds) Salicylic acid: a multifaceted hormone. Springer, Singapore, pp 123–144. https://doi.org/10.1007/978-981-10-6068-7_7

    Chapter  Google Scholar 

  • Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Malav LC (2019) Hazardous heavy metals contamination of vegetables and food chain: role of sustainable remediation approaches—a review. Environ Res 179:108792. https://doi.org/10.1016/j.envres.2019.108792

    Article  CAS  Google Scholar 

  • Kundu D, Dey S, Raychaudhuri SS (2018) Chromium (VI)—induced stress response in the plant Plantago ovata Forsk in vitro. Genes Environ 40(1):1–13. https://doi.org/10.1186/s41021-018-0109-0

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51. https://doi.org/10.1139/er-2015-0010

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Gitelson A, Lang M (1996) Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tabacco by reflectance measurments. J Plant Physiol 148(3–4):483–493. https://doi.org/10.1016/S0176-1617(96)80283-5

    Article  CAS  Google Scholar 

  • Liu MC, Zhou W (2014) Study on response of Cyperus Alternifolius to Cr (VI) and Ni combined pollution. Adv Mater Res 989:1319–1323. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1319

    Article  CAS  Google Scholar 

  • Mehrandish R, Rahimian A, Shahriary A (2019) Heavy metals detoxification: a review of herbal compounds for chelation therapy in heavy metals toxicity. J HerbMed Pharmacol 8(2):69–77. https://doi.org/10.15171/jhp.2019.12

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

    Article  CAS  Google Scholar 

  • Mourato M, Reis R, Martins ML (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. Adv Sel Plant Physiol Asp 25(12):1–7

    Google Scholar 

  • Moyano MJ, Heredia FJ, Meléndez-martínez AJ (2010) The color of olive oils: the pigments and their likely health benefits and visual and instrumental methods of analysis. Compr Rev Food Sci Food Saf 9:278–291. https://doi.org/10.1111/j.1541-4337.2010.00109.x

    Article  CAS  Google Scholar 

  • Muller AL, Oliveira JS, Mello PA, Muller EI, Flores EM (2015) Study and determination of elemental impurities by ICP-MS an active pharmaceutical ingredients using single reaction chamber digestion in compliance with USP requiments. Talanta 136:161–169. https://doi.org/10.1016/j.talanta.2014.12.023

    Article  CAS  Google Scholar 

  • Neisiani FF, Sanavy SA, Ghanati F, Dolatabadian A (2009) Effect of foliar application of pyridoxine on antioxidant enzyme activity, proline accumulation and lipid peroxidation of maize (Zea mays L.) under water deficit. Not Bot Horti Agrobot Cluj Napoca 37(1):116–121. https://doi.org/10.15835/nbha3713106

    Article  CAS  Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68(4):313–319. https://doi.org/10.1016/s0304-3770(00)00128-5

    Article  CAS  Google Scholar 

  • Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97(3):452–458. https://doi.org/10.1016/j.foodchem.2005.05.024

    Article  CAS  Google Scholar 

  • Pagliuso D, Grandis A, Igarashi ES, Lam E, Buckeridge MS (2018) Correlation of apiose levels and growth rates in duckweeds. Front Chem 6:1–10. https://doi.org/10.3389/fchem.2018.00291

    Article  CAS  Google Scholar 

  • Pagliuso D, Grandis A, Lam E, Buckeridge MS (2020) High saccharification, low lignin, and high sustainability potential make duckweeds adequate as bioenergy feedstocks. BioEnergy Res Suppl 1(2020):1–11

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1):95–102. https://doi.org/10.1590/s1677-04202005000100008

    Article  CAS  Google Scholar 

  • Pawlak-sprada S, Arasimowicz-jelonek M, Podgórska M, Deckert J (2011) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. ABP Biochim Pol 58(2):211–216

    CAS  Google Scholar 

  • Pratas J, Paulo C, Favas PJC, Venkatachalam P (2014) Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol Eng 69:170–176. https://doi.org/10.1016/j.ecoleng.2014.03.046

    Article  Google Scholar 

  • Porrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    Article  Google Scholar 

  • Radziemska M, Agnieszka B, Mazur Z, Jeznach J, Brtnický M (2019) The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr (III) and Cr (VI). Environ Sci Pollut Res 26:21351–21362

    Article  CAS  Google Scholar 

  • Rai V, Tandon PK, Khatoon S (2014) Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine. BioMed Res Int 1–10

  • Ramesh ST, Gandhimathi R, Hamoneth Joesun J, Nidheesh PV (2013) Novel agricultural waste adsorbent, Cyperus rotundus, for removal of heavy metal mixtures from aqueous solutions. Environ Eng Sci 30(2):74–81. https://doi.org/10.1089/ees.2012.0192

    Article  CAS  Google Scholar 

  • Reddy CN, Patrick Jr WH (1977) Effect of redox potential and pH on the uptake of cadmium and lead by rice plants, vol 6, no 3, pp 259–262. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

  • Revathi K, Haribabu T, Sudha P (2011) Phytoremediation of chromium contaminated soil using Sorgum plant. Int J Environ Sci 2(2):417–428

    CAS  Google Scholar 

  • Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Int J Pharm Sci Tech 6(1):12–35

    Google Scholar 

  • Sarmadi M, Karimi N, Palazon J, Ghassempour A, Mirgalili MH (2019) Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture. Plant Cell Tissue Organ Cult 137(2):319–328

    Article  CAS  Google Scholar 

  • Sasmaz A, Dogan IM, Sasmaz M (2016) Removal of Cr, Ni and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L. Water Environ J 30(3–4):235–242. https://doi.org/10.1111/wej.12185

    Article  CAS  Google Scholar 

  • Schwartz SJ, von Elbe JH, Giusti MM (2007) Colorants. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry, 4th edn. CRC Press, Boca Raton, pp 571–638. https://doi.org/10.1080/01932691.2011.584482

    Chapter  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  Google Scholar 

  • Shanker AK, Pathmanabhan G (2004) Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L) Moench cv CO 27) under Cr(III) and Cr (VI) stress. Plant Soil 265:141–151

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–751

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962. https://doi.org/10.1007/s11356-014-3635-8

    Article  CAS  Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9. https://doi.org/10.1016/j.envexpbot.2015.08.005

    Article  CAS  Google Scholar 

  • Sharma A, Yuan H, Kumar V, Ramakrishnan M, Kohli SK, Kaur R, Zheng B (2019) Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol Environ Saf 179:50–61. https://doi.org/10.1016/j.ecoenv.2019.03.120

    Article  CAS  Google Scholar 

  • Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9(1):1–17. https://doi.org/10.3390/plants9010100

    Article  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    Article  CAS  Google Scholar 

  • Sultana MY, Akratos CS, Pavlou S, Vayenas DV (2014) Chromium removal in constructed wetlands: a review. Int Biodeterior Biodegrad 96:181–190. https://doi.org/10.1016/j.ibiod.2014.08.009

    Article  CAS  Google Scholar 

  • Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y (2023) SRplot: a free online platform for data visualization and graphing. PLoS ONE 18(11):e0294236. https://doi.org/10.1371/journal.pone.0294236

    Article  CAS  Google Scholar 

  • Thomas L, DesMarais MC (2019) Mechanisms of chromium-induced toxicity. Curr Opin Toxicol 14:1–7. https://doi.org/10.1016/j.cotox.2019.05.003

    Article  Google Scholar 

  • Tiwari S, Dixit S, Verma N (2007) An effective means of bio-filtration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129:253–256

    Article  CAS  Google Scholar 

  • Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, Uricchio VF (2020) Chromium pollution in European water, sources, health risk, and remediation strategies: an overview. Int J Environ Res Public Health 17(15):5438. https://doi.org/10.3390/ijerph17155438

    Article  CAS  Google Scholar 

  • Uysal Y (2013) Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow. J Hazard Mater 263:486–492. https://doi.org/10.1016/j.jhazmat.2013.10.006

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci 151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2022) Guidelines for drinking-water quality. Geneva: World Health Organization; 2022. 12, Chemical fact sheets. Available from: https://www.ncbi.nlm.nih.gov/books/NBK579460/

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179. https://doi.org/10.1016/j.sajb.2009.10.007

    Article  CAS  Google Scholar 

  • Yogeshwaran V, Priya AK (2017) Removal of hexavalent chromium (Cr6+) using different natural adsorbents—a review. J Chromatogr Sep Tech 8:392. https://doi.org/10.4172/2157-7064.1000392

    Article  CAS  Google Scholar 

  • Zheng Y, Shi J, Pan Z, Cheng Y, Zhang Y, Li N (2014) Effect of heat treatment, pH, sugar concentration, and metal ion addition on green color retention in homogenized puree of Thompson seedless grape. LWT Food Sci Technol 55(2):595–603. https://doi.org/10.1016/j.lwt.2013.10.011

    Article  CAS  Google Scholar 

  • Zhou Y, Stepanenko A, Kishchenko O, Xu J, Borisjuk N (2023) Duckweeds for phytoremediation of polluted water. Plants 12:589. https://doi.org/10.3390/plants12030589

    Article  CAS  Google Scholar 

  • Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM (2023) Chromium toxicity, speciation, and remediation strategies in soil-plant interface: a critical review. Front Plant Sci 13:1081624. https://doi.org/10.3389/fpls.2022.1081624

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend thanks Alzahra University's Research Vice-Chancellor for its support in implementing the project

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, writing—original draft preparation and data curation: MA and AS; OM was the advisor of the thesis; review and editing: AS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. Saboora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanzadeh, M., Saboora, A. & Moradlou, O. Phytoremediation potential of duckweed (Lemna minor L.) for hexavalent chromium removal in synthetic wastewater: unveiling physiological response and defense mechanisms against excessive heavy metal uptake. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05721-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05721-6

Keywords

Navigation